

Chapter 1-17

Operations Management

Roberta Russell & Bernard W. Taylor, III

Organization of This Text: Part I – Operations Management

- Intro. to Operations and Supply Chain Management:
- Quality Management:
- Statistical Quality Control:
- Product Design:
- Service Design:
- Processes and Technology:
- Facilities:
- Human Resources:
- Project Management:

Chapter 1 (Slide 5) Chapter 2 (Slide 67) Chapter 3 (Slide 120) Chapter 4 (Slide 186) Chapter 5 (Slide 231) Chapter 6 (Slide 276) Chapter 7 (Slide 321) Chapter 8 (Slide 402) Chapter 9 (Slide 450)

Organization of This Text: Part II – Supply Chain Management

- Supply Chain
 Strategy and Design:
- Global Supply Chain
 Procurement and Distribution: Chapter 11 (Slide 534)
- Forecasting:
- Inventory Management:
- Sales and Operations Planning:
- Resource Planning:
- Lean Systems:
- Scheduling:

Chapter 12 (Slide 575) Chapter 13 (Slide 641)

Chapter 10 (Slide 507)

Chapter 14 (Slide 703) Chapter 15 (Slide 767) Chapter 16 (Slide 827) Chapter 17 (Slide 878)

Learning Objectives of this Course

- Gain an appreciation of strategic importance of operations and supply chain management in a global business environment
- Understand how operations relates to other business functions
- Develop a working knowledge of concepts and methods related to designing and managing operations and supply chains
- Develop a skill set for quality and process improvement

Chapter 1

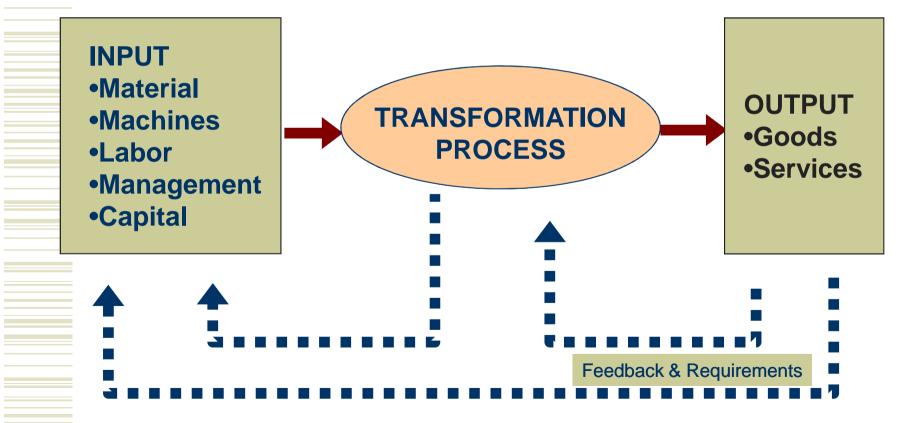
Introduction to Operations and Supply Chain Management

Operations Management

Roberta Russell & Bernard W. Taylor, III

Lecture Outline

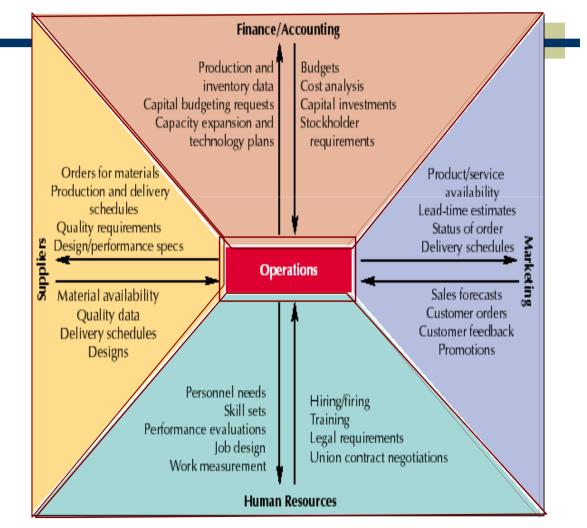
- What Operations and Supply Chain Managers Do
- Operations Function
- Evolution of Operations and Supply Chain Management
- Globalization and Competitiveness
- Operations
- Strategy and Organization of the Text
- Learning Objectives for This Course


What Operations and Supply Chain Managers Do

- What is Operations Management?
 - design, operation, and improvement of productive systems
- What is Operations?
 - a function or system that transforms inputs into outputs of greater value
- What is a Transformation Process?
 - a series of activities along a value chain extending from supplier to customer
 - activities that do not add value are superfluous and should be eliminated

Transformation Process

- *Physical:* as in manufacturing operations
- Locational: as in transportation or warehouse operations
- Exchange: as in retail operations
- Physiological: as in health care
- Psychological: as in entertainment
- Informational: as in communication


Operations as a Transformation Process

Operations Function

- Operations
- Marketing
- Finance and Accounting
- Human
 Resources

Outside
 Suppliers

How is Operations Relevant to my Major?

- Accounting
- Information
 Technology
- Management

- "As an auditor you must understand the fundamentals of operations management."
- "IT is a tool, and there's no better place to apply it than in operations."
- "We use so many things you learn in an operations class scheduling, lean production, theory of constraints, and tons of quality tools."

How is Operations Relevant to my Major? (cont.)

- Economics
- Marketing

Finance

- "It's all about processes. I live by flowcharts and Pareto analysis."
- "How can you do a good job marketing a product if you're unsure of its quality or delivery status?"
- "Most of our capital budgeting requests are from operations, and most of our cost savings, too."

Evolution of Operations and Supply Chain Management

Craft production

 process of handcrafting products or services for individual customers

Division of labor

 dividing a job into a series of small tasks each performed by a different worker

Interchangeable parts

 standardization of parts initially as replacement parts; enabled mass production

Evolution of Operations and Supply Chain Management (cont.)

Scientific management

systematic analysis of work methods

Mass production

 high-volume production of a standardized product for a mass market

Lean production

 adaptation of mass production that prizes quality and flexibility

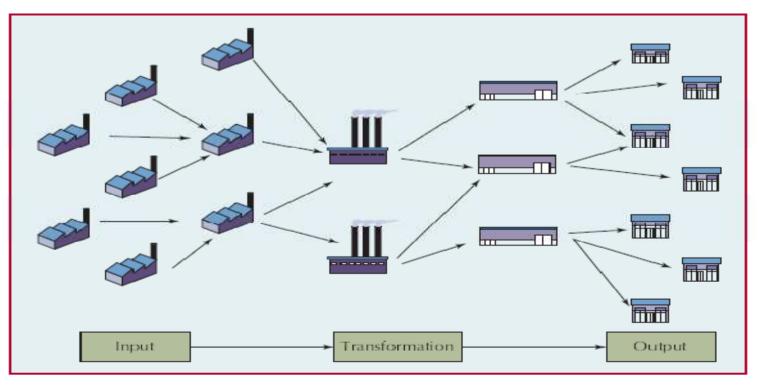
Historical Events in Operations Management

Era	Events/Concepts	Dates	Originator
Industrial Revolution	Steam engine	1769	James Watt
	Division of labor	1776	Adam Smith
	Interchangeable parts	1790	Eli Whitney
Scientific Management	Principles of scientific management	1911	Frederick W. Taylo
	Time and motion studies	1911	Frank and Lillian Gilbreth
	Activity scheduling chart	1912	Henry Gantt
	Moving assembly line	1913	Henry Ford

Historical Events in Operations Management (cont.)

Era	Events/Concepts	Dates	Originator
	Hawthorne studies	1930	Elton Mayo
Human Relations		1940s	Abraham Maslow
	Motivation theories	1950s	Frederick Herzberg
		1960s	Douglas McGregor
Operations Research	Linear programming	1947	George Dantzig
	Digital computer	1951	Remington Rand
	Simulation, waiting line theory, decision theory, PERT/CPM	1950s	Operations research groups
	MRP, EDI, EFT, CIM	1960s, 1970s	Joseph Orlicky, IBN and others

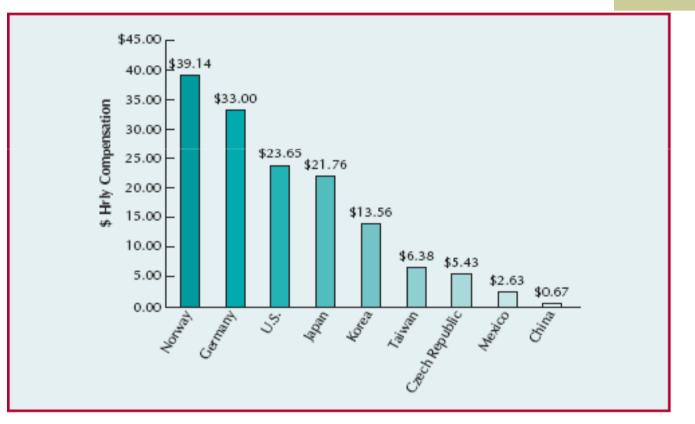
Historical Events in Operations Management (cont.)


Era	Events/Concepts	Dates	Originator
=	JIT (just-in-time)	1970s	Taiichi Ohno (Toyota
	TQM (total quality	1980s	W. Edwards Deming
	management)		Joseph Juran
Quality	Strategy and	1980s	Wickham Skinner,
Revolution	operations	13003	Robert Hayes
	Business process	1990s	Michael Hammer,
-	reengineering	19905	James Champy
	Six Sigma	1990s	GE, Motorola

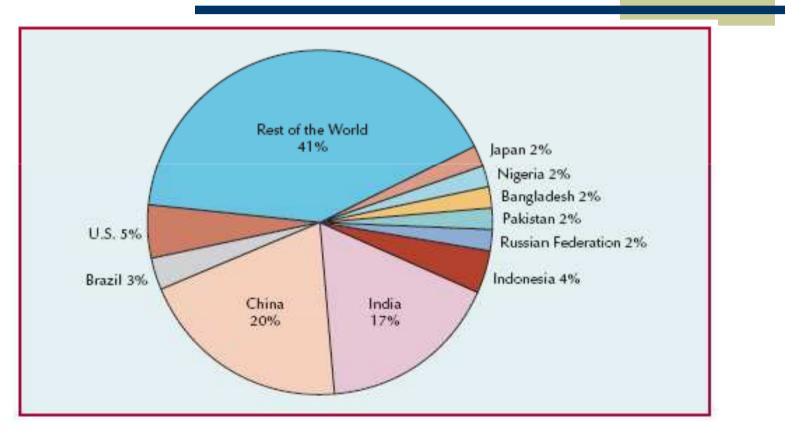
Historical Events in **Operations Management (cont.)**

Era	Events/Concepts	Dates	Originator
Internet	Internet, WWW, ERP,	1990s	ARPANET, Tim
Revolution	supply chain management		Berners-Lee SAP,
			i2 Technologies,
			ORACLE
	E-commerce	2000s	Amazon, Yahoo,
			eBay, Google, and
			others
Globalization	WTO, European Union,	1990s	Numerous countries
	and other trade	2000s	and companies
	agreements, global supply		
	chains, outsourcing, BPO,		
	Services Science		

Evolution of Operations and Supply Chain Management (cont.)

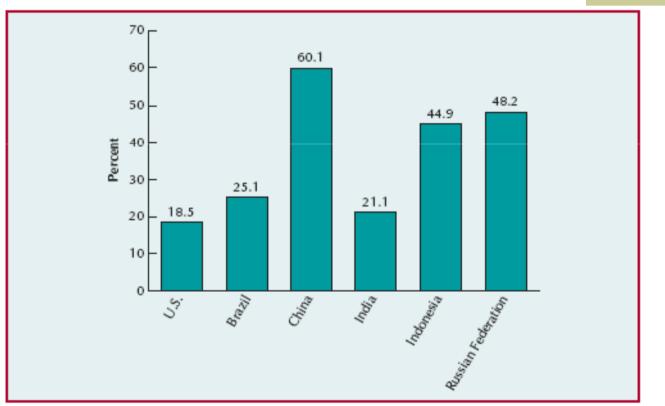

- Supply chain management
 - management of the flow of information, products, and services across a network of customers, enterprises, and supply chain partners

Globalization and Competitiveness


- Why "go global"?
 - favorable cost
 - access to international markets
 - response to changes in demand
 - reliable sources of supply
 - latest trends and technologies
- Increased globalization
 - results from the Internet and falling trade barriers

Globalization and Competitiveness (cont.)

Hourly Compensation Costs for Production Workers Source: U.S. Bureau of Labor Statistics, 2005.


Globalization and Competitiveness (cont.)

World Population Distribution Source: U.S. Census Bureau, 2006.

1-22

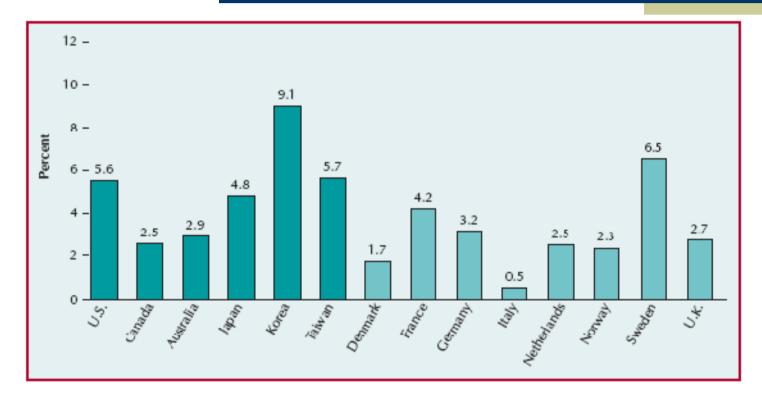
Globalization and Competitiveness (cont.)

Trade in Goods as % of GDP

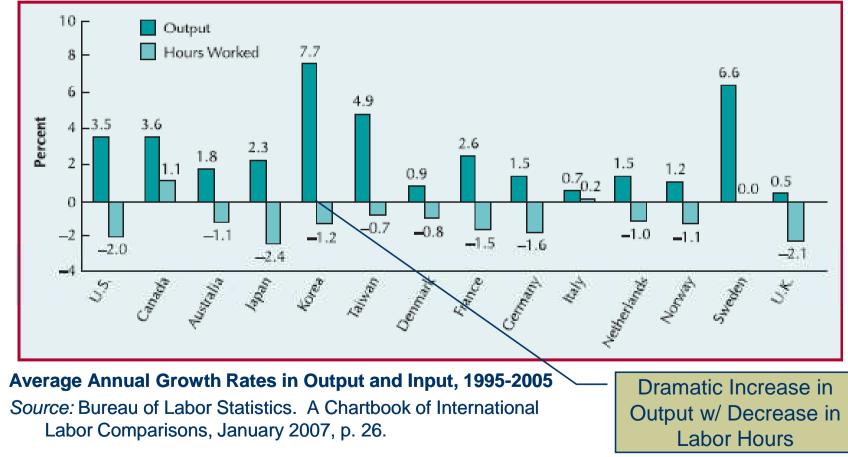
(sum of merchandise exports and imports divided by GDP, valued in U.S. dollars)

Productivity and Competitiveness

Competitiveness


 degree to which a nation can produce goods and services that meet the test of international markets

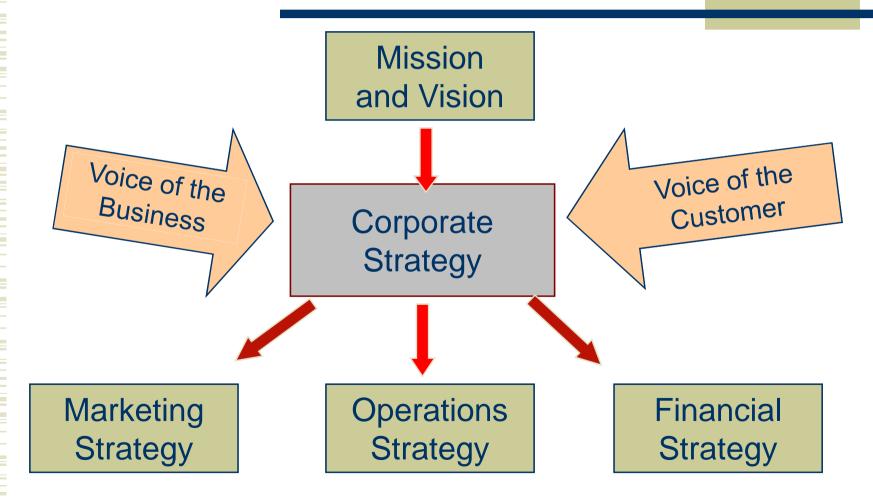
Productivity


- ratio of output to input
- Output
 - sales made, products produced, customers served, meals delivered, or calls answered
- Input
 - labor hours, investment in equipment, material usage, or square footage

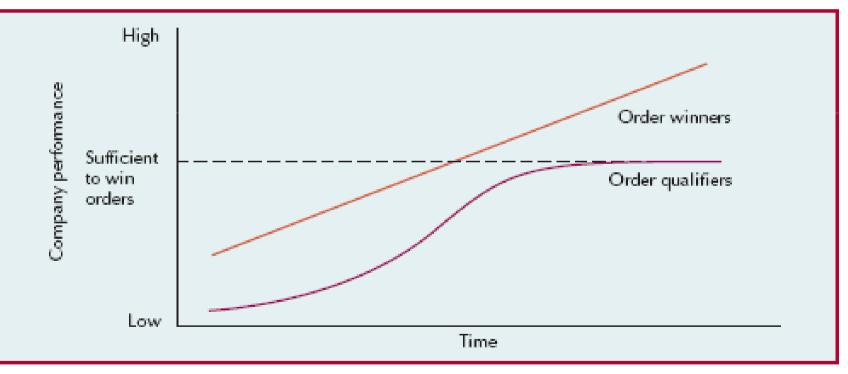
Single Factor-Productivity		
Output Labor	Output Materials	Output Capital
Multifactor Productivity		
Output		Output
Labor + Materials + Overhead		Labor + Energy + Capital
Total Factor Productivity		
Goods and services produced		
All inputs used to produce them		

Measures of Productivity

Average Annual Growth Rates in Productivity, 1995-2005. Source: Bureau of Labor Statistics. A Chartbook of International Labor Comparisons. January 2007, p. 28.

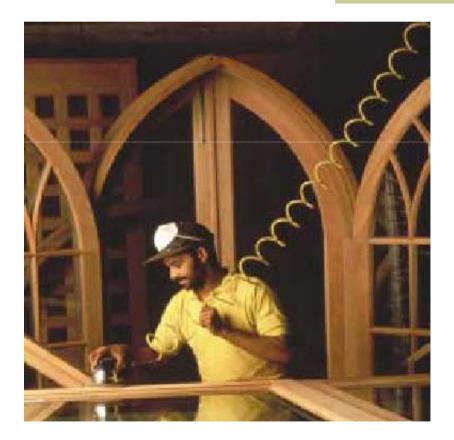


- Retrenching
 - productivity is increasing, but both output and input decrease with input decreasing at a faster rate
- Assumption that more input would cause output to increase at the same rate
 - certain limits to the amount of output may not be considered
 - output produced is emphasized, not output sold; increased inventories


Strategy and Operations

- Strategy
 - Provides direction for achieving a mission
- Five Steps for Strategy Formulation
 - Defining a primary task
 - What is the firm in the business of doing?
 - Assessing core competencies
 - What does the firm do better than anyone else?
 - Determining order winners and order qualifiers
 - What qualifies an item to be considered for purchase?
 - What wins the order?
 - Positioning the firm
 - How will the firm compete?
 - Deploying the strategy

Strategic Planning


Order Winners and Order Qualifiers

Source: Adapted from Nigel Slack, Stuart Chambers, Robert Johnston, and Alan Betts, *Operations and Process Management*, Prentice Hall, 2006, p. 47

Positioning the Firm

- Cost
- Speed
- Quality
- Flexibility

Positioning the Firm: Cost

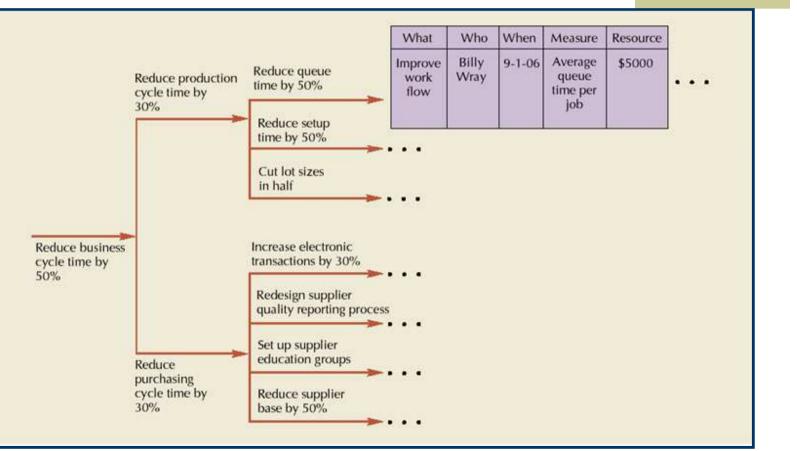
- Waste elimination
 - relentlessly pursuing the removal of all waste
- Examination of cost structure
 - looking at the entire cost structure for reduction potential
- Lean production
 - providing low costs through disciplined operations

Positioning the Firm: Speed

- fast moves, fast adaptations, tight linkages
- Internet
 - conditioned customers to expect immediate responses
- Service organizations
 - always competed on speed (McDonald's, LensCrafters, and Federal Express)
- Manufacturers
 - time-based competition: build-to-order production and efficient supply chains
- Fashion industry
 - two-week design-to-rack lead time of Spanish retailer, Zara

Positioning the Firm: Quality

- Minimizing defect rates or conforming to design specifications; please the customer
- Ritz-Carlton one customer at a time
 - Service system is designed to "move heaven and earth" to satisfy customer
 - Every employee is empowered to satisfy a guest's wish
 - Teams at all levels set objectives and devise quality action plans
 - Each hotel has a quality leader


Positioning the Firm: Flexibility

- ability to adjust to changes in product mix, production volume, or design
- National Bicycle Industrial Company
 - offers 11,231,862 variations
 - delivers within two weeks at costs only 10% above standard models
 - mass customization: the mass production of customized parts

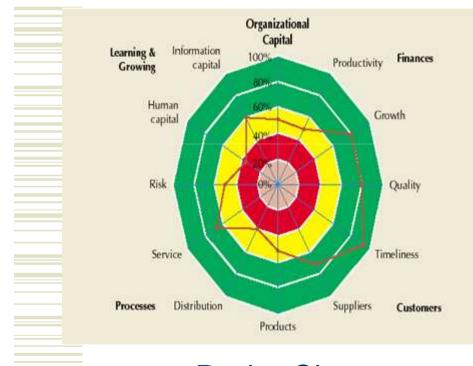
Policy Deployment

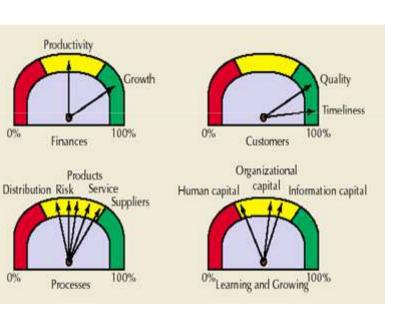
- Policy deployment
 - translates corporate strategy into measurable objectives
- Hoshins
 - action plans generated from the policy deployment process

Policy Deployment

Derivation of an Action Plan Using Policy Deployment

Balanced Scorecard

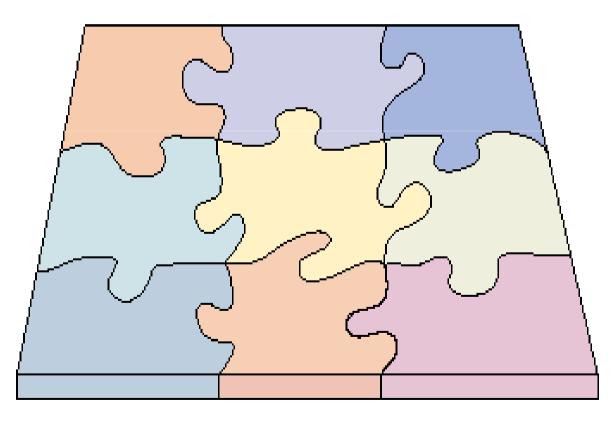

- Balanced scorecard
 - measuring more than financial performance
 - finances
 - customers
 - processes
 - learning and growing
- Key performance indicators
 - a set of measures that help managers evaluate performance in critical areas


Balanced Scorecard

Balanced Scorecard Worksheet

Dimension		ension Objectives Key Per Indicate		ce Goal for 2008		Score	Mean Performance	
Finances	Productivity	Become industry cost leader	% reduction in cost per unit	20%	10%	50%	65%	
	Growth	Increase market share	Market share	50%	40%	80%	00%	
Oustomens	Quality	Zero defects	% good quality first pass	100%	80%	80%	87%	
Oustc	Timeliness	On-time delivery	% of on-time deliveries	95%	90%	95%	0776	
	Suppliers	Integrate into production	% orders delivered to assembly	50%	40%	80%	73%	
	Suppliers	Reduce inspections	% suppliers ISO 9000 certified	90%	60%	67%	75%	
Ses	Products	Reduce time to produce	Cycle time	10 mins.	12 mins.	83%	52%	
	, roudoto	Improve quality	# warranty claims	200	1000	20%	3276	
Processes	Distribution	Reduce transportation costs	% FTL shipments	75%	30%	40%	40%	
a.	Post-sales Service	Improve response to customer inquiries	% queries satisfied on first pass	90%	60%	67%	67%	
	Risk	Reduce Inventory obsolescence	Inventory turnover	12	6	50%	50%	
	T do R	Reduce customer backlog	% order backlogged	10%	20%	50%	5578	
	Human	Develop quality improvement	# of six sigma Black Belts	25	2	8%	35%	
ĝ	capital	skills	% trained in SPC	80%	50%	63%	30%	
Learning & Growing	Information capital	Provide technology to	% customers who can track orders	100%	60%	60%	61%	
tim	capital	improve processes	% suppliers who use EDI	80%	50%	63%	a data a	
Lea	Organizational	Create innovative culture	# of employee suggestions	100	60	60%	55%	
	capital		% of products new this year	20%	10%	50%	3078	

Balanced Scorecard



Radar Chart

Dashboard

Operations Strategy

1-42

Chapter 1 Supplement

Decision Analysis

Operations Management

Roberta Russell & Bernard W. Taylor, III

Lecture Outline

- Decision Analysis
- Decision Making without Probabilities
- Decision Analysis with Excel
- Decision Analysis with OM Tools
- Decision Making with Probabilities
- Expected Value of Perfect Information
- Sequential Decision Tree

Decision Analysis

- Quantitative methods
 - a set of tools for operations manager
- Decision analysis
 - a set of quantitative decision-making techniques for decision situations in which uncertainty exists
 - Example of an uncertain situation
 - demand for a product may vary between 0 and 200 units, depending on the state of market

Decision Making Without Probabilities

- States of nature
 - Events that may occur in the future
 - Examples of states of nature:
 - high or low demand for a product
 - good or bad economic conditions
- Decision making under risk
 - probabilities can be assigned to the occurrence of states of nature in the future
- Decision making under uncertainty
 - probabilities can NOT be assigned to the occurrence of states of nature in the future

Payoff Table

- Payoff table
 - method for organizing and illustrating payoffs from different decisions given various states of nature
- Payoff
 - outcome of a decision

States Of Nature					
а	b				
Payoff 1a	Payoff 1b				
Payoff 2a	Payoff 2b				
	Payoff 1a				

Supplement 1-47

Decision Making Criteria Under Uncertainty

- Maximax
 - choose decision with the maximum of the maximum payoffs
- Maximin
 - choose decision with the maximum of the minimum payoffs
- Minimax regret
 - choose decision with the minimum of the maximum regrets for each alternative

Decision Making Criteria Under Uncertainty (cont.)

Hurwicz

- choose decision in which decision payoffs are weighted by a coefficient of optimism, alpha
- coefficient of optimism is a measure of a decision maker's optimism, from 0 (completely pessimistic) to 1 (completely optimistic)
- Equal likelihood (La Place)
 - choose decision in which each state of nature is weighted equally

Southern Textile Company

	STATES OF NATURE					
DECISION	Good Foreign Competitive Conditions	Poor Foreign Competitive Conditions				
Expand	\$ 800,000	\$ 500,000				
Maintain status quo	1,300,000	-150,000				
Sell now	320,000	320,000				

Maximax Solution

	STATES OF NATURE					
	Good Foreign	Poor Foreign				
DECISION	Competitive Conditions	Competitive Condition				
Expand	\$ 800,000	\$ 500,000				
Maintain status quo	1,300,000	-150,000				
Sell now	320,000	320,000				
Expand: Status quo: Sell:	\$800,000 1,300,000 ← Max 320,000	cimum				
	Decisio	on: Maintain status qu				

Maximin Solution

	STATES OF NATURE					
_	Good Foreign	Poor Foreign				
DECISION	Competitive Conditions	Competitive Condition				
Expand	\$ 800,000	\$ 500,000				
Maintain status quo	1,300,000	-150,000				
Sell now	320,000	320,000				
	\$500,000 <i>← Max</i>					

Minimax Regret Solution

Good Foreign Competitive Conditions Poor Foreign Competitive Conditions

\$1,300,000 - 800,000 = 500,000 \$500,000 - 500,000 = 0 1,300,000 - 1,300,000 = 0 500,000 - (-150,000)= 650,000 1,300,000 - 320,000 = 980,000 500,000 - 320,000 = 180,000

Expand: Status quo: Sell: \$500,000 *← Minimum* 650,000 980,000

Decision: Expand

Hurwicz Criteria

	STATES OF NATURE					
	Good Foreign	Poor Foreign				
DECISION	Competitive Conditions	Competitive Conditions				
Expand	\$ 800,000	\$ 500,000				
Maintain status quo	1,300,000	-150,000				
Sell now	320,000	320,000				
<i>α</i> = 0.3	1 - α = 0.7					
<i>Expand:</i> \$800,000(0.3) + 500,000(0.7) = \$590,000						
<i>Expand:</i> \$800,000	(0.3) + 300,000(0.7) - 433	90,000 ← Maximum				
•	(0.3) + 300,000(0.7) = 333 (000(0.3) - 150,000(0.7) =					
<i>Status quo:</i> 1,300,						

Supplement 1-54

Equal Likelihood Criteria

	STATES OF NATURE					
	Good Foreign	Poor Foreign				
DECISION	Competitive Conditions	Competitive Conditions				
Expand	\$ 800,000	\$ 500,000				
Maintain status quo	1,300,000	-150,000				
Sell now	320,000	320,000				

Two states of nature each weighted 0.50 *Expand:* $\$800,000(0.5) + 500,000(0.5) = \$650,000 \leftarrow Maximum$ *Status quo:* 1,300,000(0.5) -150,000(0.5) = 575,000 *Sell:* 320,000(0.5) + 320,000(0.5) = 320,000

Decision: Expand

Decision Analysis with Excel

		Data Wondow 19	60									
	1 6 B 2 X 4 8 -	0 0- 4	1 1 - 0 1 81 W	1 JU 18976 -	[2] . [And		- 10 1	n / n		10.333	1.96	11
					31.50			0.035	150			
CA SIS SIS IN		de with Characteria day										
ES A	 # =MA20(08:06) B 	G	0	E	E .	0	- 10- 10-			× .		_
	St.t: Deckion-Making Crite			F								
2	And the summer of the	the strate particula				=MAX	(C6)	D61				
3							1200					
4		States of	Wetani		1	Rep	1. J.	-				
4	Дескаря	Goad Conditions		Macrouse	Mainian	Goad	Paer					
6	Expand	1800,000	500,000	200000	500,000	500,000	and the second					
24	Maintain statum ave	1.300.000	(1 50,000)	1,330,000	[250,000]		<u>eco.oco</u>	-	=MA	X(D)	5:D8)	-
0	Selfnew	300,000	3(20,000	320,000 [220,000	980,000	180,000					
10 . dt	Maximan decision =	1,300,000	Status aux			3. STN	ty care.	troop k		_	-	_
10 (1) 11 (2)	Maximin decision =	-500,000	Status quo Expend			=MIN	4(C8:	D81				
12 90	unterest derived	-940.0991	- ANDERSON			A 44 10 10 10	A Statement	-	0			
13 (3)	Mournay Regret		~	1.1								
	Expendim	500,000	Select	To an arrest	e antes per la trave	-15						
14	- oog autete nietneM	500,000 650,000		=MAX	(F0;F)	5)						
16 17	Sal non m	1980.000		and Provide Land		A.						
			~									
10 (4)	Hornioz	X 998	~	=MAX	4C7.H	71						
19	Alpta =				Maria I.	- 1						
20 21 22 23	1 · Alpta = Especial	0.00	Select	1		and initia						
33	Maintain stadue ess =	295,000	-24594C1	=C19	57.0	20.10						
13	Sel nov -	3201000		1=0125	CENTRUM	70. LO. L. J						
24				2 I		10.20 -01	×					
25 61	Equal Likelikood	10000		for many	o a come a come	00						
75	Expande		Select	=:5*E	8+.5*H	8						
27	Maintain status puo =	575,000			10/015230300							
20	S ell now 🖛	320,000 -										

Supplement 1-56

Decision Analysis with OM Tools

1	the DR Yere poor by	reat juck jaca	1900au	640					
0	◎量型 母D.♥ X	陶商・クー		🐝 石土銀星	i 👔 🚯 1009	御、 + 44	0) Se		
12	11 To	and the said and t	Sec. 1	and Revenue.					
-	54 - 5.03								
	Å	B		6	5	E	1		
1	Decision Making Und		1	24	1.	OM Student .	Example 51.2		
2				house all the loss that is		and the second	Postal and a second		
-	Avant:		deput adults, taken the electricity and states of restaries, and humat the values for each electricity						
4	Aipta =	8.50			r state afostare				
5		Des Contractor	Sec. 1	CONTRACTOR DATE			10		
6	1. December 201		e of Alasta	*					
7	Decision	Gend Carditions Paer C		Conditions					
8	Expand	6000006.00		000.00					
2	Maintain status que	1.303000.00	- 85	0000.00					
10	Sell new	3320300 00	33	00.000					
UF .	CERTIFICATION CONTRACTOR	1.532.6208		C					
t)	CONTRACTOR AND AND A LOCAL								
13	Galoniations				and shares to see the	diama and			
14	T-West States	Constant and the	1 22-03	STATISTICS.	Maximum	Espaal	1722232893		
15	Decision	Mechanik		Nuon	Regret	Litention	Manekaz		
6	Espand	800000.00	the second se	3066.90	500000.00	650000.00	590000.00		
17	Moletain status qua	1 300000.00		0000.00	650000.00	5/9000.00	296000.00		
8	Sell rater	3020008-00		000.00	990000.00	320000.00	320000-00		
19						1/2 31			
	Ontput								
23.	Maximux decision	1.30000.00		in states and		-			
22	Maximin Bacision	500000.00	Espean						
11	Minimus Ringert	500000.00	L'epon						
24	Equal Likelihood	650000.00	Expon						
25 26	. Italieisz	1900005.00	Capaza						

Supplement 1-57

Decision Making with Probabilities

- Risk involves assigning probabilities to states of nature
- Expected value
 - a weighted average of decision outcomes in which each future state of nature is assigned a probability of occurrence

$$EV(x) = \sum_{i=1}^{n} \sum_{i=1}^$$

where

 x_i = outcome i $p(x_i)$ = probability of outcome i

Decision Making with Probabilities: Example

STATES OF NATURE

-	Good Foreign	Poor Foreign
DECISION	Competitive Conditions	Competitive Conditions
Expand	\$ 800,000	\$ 500,000
Maintain status quo	1,300,000	-150,000
Sell now	320,000	320,000

 $p(good) = 0.70 \qquad p(poor) = 0.30$ EV(expand): \$800,000(0.7) + 500,000(0.3) = \$710,000 EV(status quo): 1,300,000(0.7) -150,000(0.3) = 865,000 \leftarrow Maximum EV(sell): 320,000(0.7) + 320,000(0.3) = 320,000

Decision: Status quo

Decision Making with Probabilities: Excel

2	Microsoft Exc	el - ExhibitS1.3	Decision Anal	ysis.xls							
8	Ele Edit y	jew Insert For	mat <u>I</u> ools <u>D</u> a	ta <u>W</u> indow <u>H</u>	elp						
D	😂 🖬 🖏	₿ ₿\$\$\$ %	₽ 6. • √	n . Dr - 9	5 - 21 X	1 🛍 🚳 10	• 2.	Arial		- 10	•
Ľ.	ta ta 🖂	6 (2) (2) (3)	Reply w	th Changes Ep	d Review						
	D6 ·		B6+C5*C6								
	A	В	С	D	E	F	G H		J		ł
1	Example St	1.2: Expected Va	alue				1 C		1	8	
2						Form	ula for	expect	ed		
3		Good	Poor								
4		Conditions	Conditions	Expected		valu	e comp	inted i	n		
5	Decision	0.7	0.3	Value					· ·		
6	Expand	800,000	500,000	710,000			cell [)6			
7	Status quo	1,300,000	-150000	865,000	1	L	cen r	/0		16	
8	Sell now	320,000	320,000	320,000							
9											

Expected Value of Perfect Information

• EVPI

- maximum value of perfect information to the decision maker
- maximum amount that would be paid to gain information that would result in a decision better than the one made without perfect information

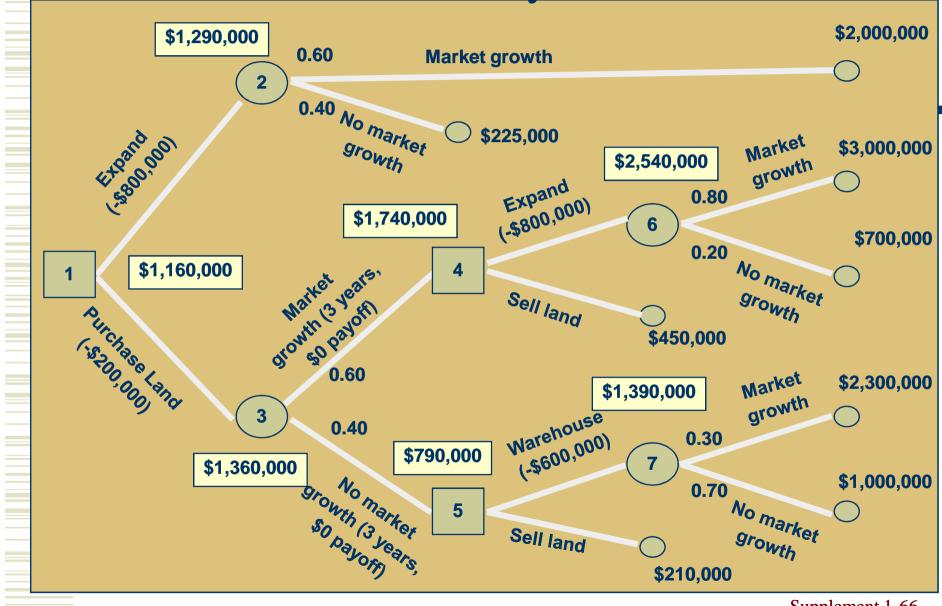
EVPI Example

- Good conditions will exist 70% of the time
 - choose maintain status quo with payoff of \$1,300,000
- Poor conditions will exist 30% of the time
 - choose expand with payoff of \$500,000
- Expected value given perfect information
 - = \$1,300,000 (0.70) + 500,000 (0.30)

=\$1,060,000

Recall that expected value without perfect information was \$865,000 (maintain status quo)

EVPI=\$1,060,000 - 865,000 = \$195,000


Sequential Decision Trees

- A graphical method for analyzing decision situations that require a sequence of decisions over time
- Decision tree consists of
 - Square nodes indicating decision points
 - Circles nodes indicating states of nature
 - Arcs connecting nodes

Evaluations at Nodes

Compute EV at nodes 6 & 7 EV(node 6)= 0.80(\$3,000,000) + 0.20(\$700,000) = \$2,540,000 EV(node 7)= 0.30(\$2,300,000) + 0.70(\$1,000,000) = \$1,390,000Decision at node 4 is between \$2,540,000 for Expand and \$450,000 for Sell land Choose Expand Repeat expected value calculations and decisions at remaining nodes

Decision Tree Analysis

Supplement 1-66

Chapter 2

Quality Management

Operations Management

Roberta Russell & Bernard W. Taylor, III

Lecture Outline

- What Is Quality?
- Evolution of Quality Management
- Quality Tools
- TQM and QMS
- Focus of Quality Management— Customers
- Role of Employees in Quality Improvement

- Quality in Service Companies
- Six Sigma
- Cost of Quality
- Effect of Quality Management on Productivity
- Quality Awards
- ISO 9000

What Is Quality?

- Oxford American Dictionary
 - a degree or level of excellence
- American Society for Quality
 - totality of features and characteristics that satisfy needs without deficiencies
- Consumer's and producer's perspective

What Is Quality: Customer's Perspective

Fitness for use

 how well product or service does what it is supposed to

Quality of design

- designing quality characteristics into a product or service
- A Mercedes and a Ford are equally "fit for use," but with different design dimensions.

Dimensions of Quality: Manufactured Products

Performance

 basic operating characteristics of a product; how well a car handles or its gas mileage

Features

 "extra" items added to basic features, such as a stereo CD or a leather interior in a car

Reliability

 probability that a product will operate properly within an expected time frame; that is, a TV will work without repair for about seven years

Dimensions of Quality: Manufactured Products (cont.)

- Conformance
 - degree to which a product meets pre-established standards

Durability

- how long product lasts before replacement; with care, L.L.Bean boots may last a lifetime
- Serviceability
 - ease of getting repairs, speed of repairs, courtesy and competence of repair person

Dimensions of Quality: Manufactured Products (cont.)

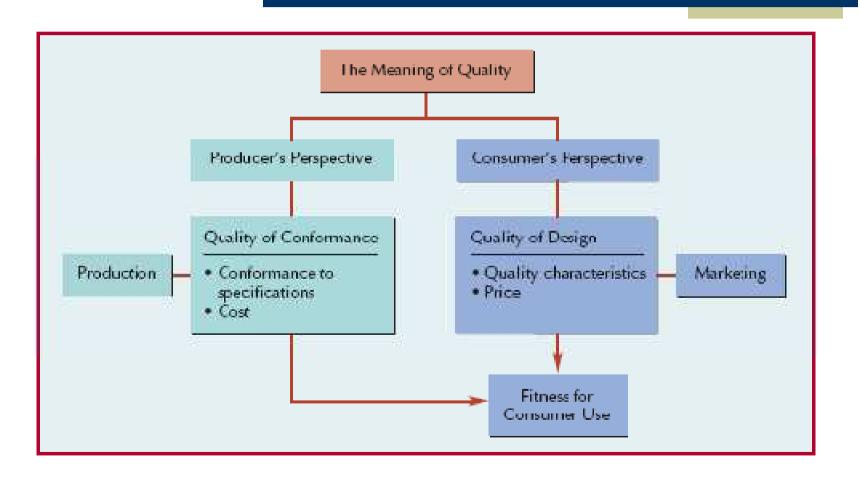
- Aesthetics
 - how a product looks, feels, sounds, smells, or tastes
- Safety
 - assurance that customer will not suffer injury or harm from a product; an especially important consideration for automobiles
- Perceptions
 - subjective perceptions based on brand name, advertising, and like

Dimensions of Quality: Services

- Time and timeliness
 - how long must a customer wait for service, and is it completed on time?
 - is an overnight package delivered overnight?
- Completeness:
 - is everything customer asked for provided?
 - is a mail order from a catalogue company complete when delivered?

Dimensions of Quality: Service (cont.)

- Courtesy:
 - how are customers treated by employees?
 - are catalogue phone operators nice and are their voices pleasant?
- Consistency
 - is same level of service provided to each customer each time?
 - is your newspaper delivered on time every morning?


Dimensions of Quality: Service (cont.)

- Accessibility and convenience
 - how easy is it to obtain service?
 - does service representative answer you calls quickly?
- Accuracy
 - is service performed right every time?
 - is your bank or credit card statement correct every month?
- Responsiveness
 - how well does company react to unusual situations?
 - how well is a telephone operator able to respond to a customer's questions?

What Is Quality: Producer's Perspective

- Quality of conformance
 - making sure product or service is produced according to design
 - if new tires do not conform to specifications, they wobble
 - if a hotel room is not clean when a guest checks in, hotel is not functioning according to specifications of its design

Meaning of Quality

What Is Quality: A Final Perspective

- Customer's and producer's perspectives depend on each other
- Producer's perspective:
 - production process and COST
- Customer's perspective:
 - fitness for use and PRICE
- Customer's view must dominate

Evolution of Quality Management: Quality Gurus

- Walter Shewart
 - In 1920s, developed control charts
 - Introduced term "quality assurance"
- W. Edwards Deming
 - Developed courses during World War II to teach statistical quality-control techniques to engineers and executives of companies that were military suppliers
 - After war, began teaching statistical quality control to Japanese companies
- Joseph M. Juran
 - Followed Deming to Japan in 1954
 - Focused on strategic quality planning
 - Quality improvement achieved by focusing on projects to solve problems and securing breakthrough solutions

Evolution of Quality Management: Quality Gurus (cont.)

- Armand V. Feigenbaum
 - In 1951, introduced concepts of total quality control and continuous quality improvement
- Philip Crosby
 - In 1979, emphasized that costs of poor quality far outweigh cost of preventing poor quality
 - In 1984, defined absolutes of quality management conformance to requirements, prevention, and "zero defects"
- Kaoru Ishikawa
 - Promoted use of quality circles
 - Developed "fishbone" diagram
 - Emphasized importance of internal customer

Deming's 14 Points

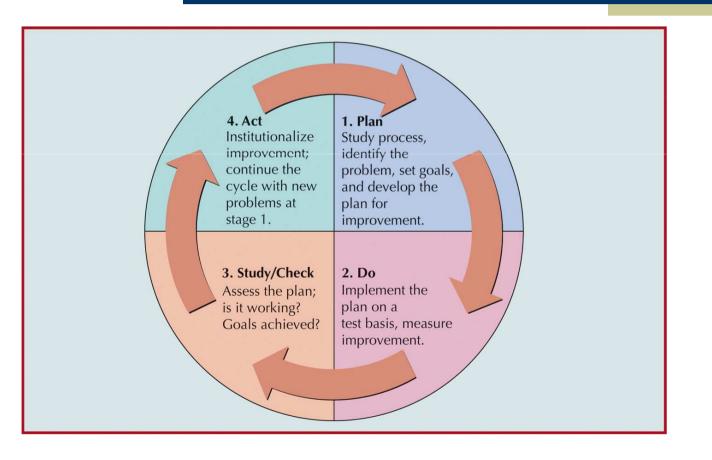
Create constancy of purpose
 Adopt philosophy of prevention

 Cease mass inspection
 Select a few suppliers based on quality

 Constantly improve system and workers

Deming's 14 Points (cont.)

- 6. Institute worker training
- 7. Instill leadership among supervisors
- 8. Eliminate fear among employees
- 9. Eliminate barriers between departments
- 10. Eliminate slogans

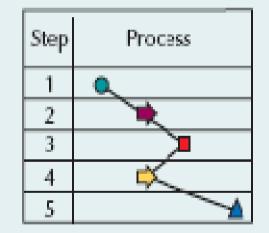

Deming's 14 Points (cont.)

11. Remove numerical quotas
 12. Enhance worker pride

13. Institute vigorous training and education programs

14. Develop a commitment from top management to implement above 13 points

Deming Wheel: PDCA Cycle

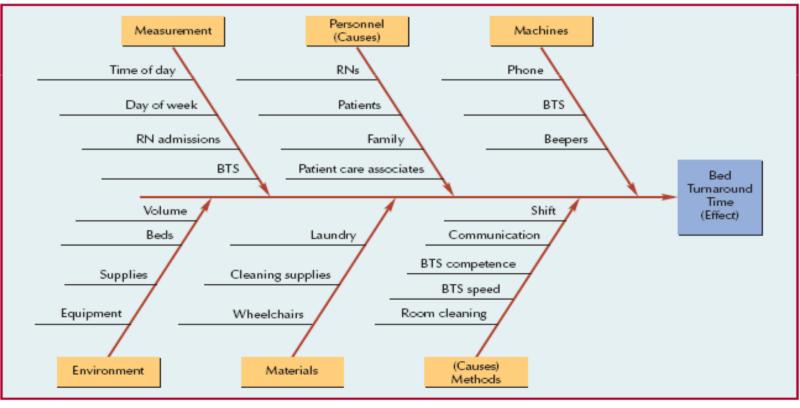

Quality Tools

- Process Flow Chart
- Cause-and-Effect Diagram
- Check Sheet
- Pareto Analysis

- Histogram
- Scatter Diagram
- Statistical Process
 Control Chart

Flow Chart

Process Flowchart



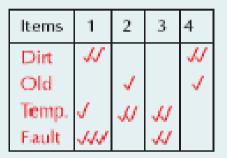
A diagram of the steps in a process; helps focus on where in a process a quality problem might exist.

Cause-and-Effect Diagram

Cause-and-effect diagram ("fishbone" diagram)

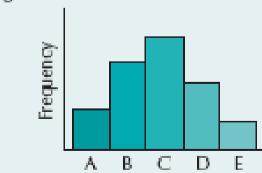
chart showing different categories of problem causes

Cause-and-Effect Matrix


Cause-and-effect matrix

grid used to prioritize causes of quality problems

		2	Key Output (Y) Variables (CTQC's)							
			1	2	3	4	5	6		
			Turnaround time	Patient flow	Physician time	Emergency dept.	Patient time	Operating room		Rank of X Variables/
1	Key Input	Customer rank	1	3	2	5	6	4		Importance
	(X) Variables	Weight	10	9	9	7	7	8	Score	to Customer
	BTS		9	8	10	8		5	348	3
2	Beepers		7	5	8		5		222	7
	Volume		7	10	6	7	5	5	338	4
4	Beds		4		9	1.			121	10
5	Time of day		3	4	5	4	10		209	8
6	Day of week		9	10	6			6	232	5
7	Communication		9	8	10	8	7	9	429	1
8	BTS competence	N-1	10	9	7	1. 1146	7	7	349	2
9	Room cleaning	Concession of the	7	5	3		0	4	230	C
0	Supplies		8	9	10				, 151	9
							(8)	(10) + (9)(9	0) - 161	

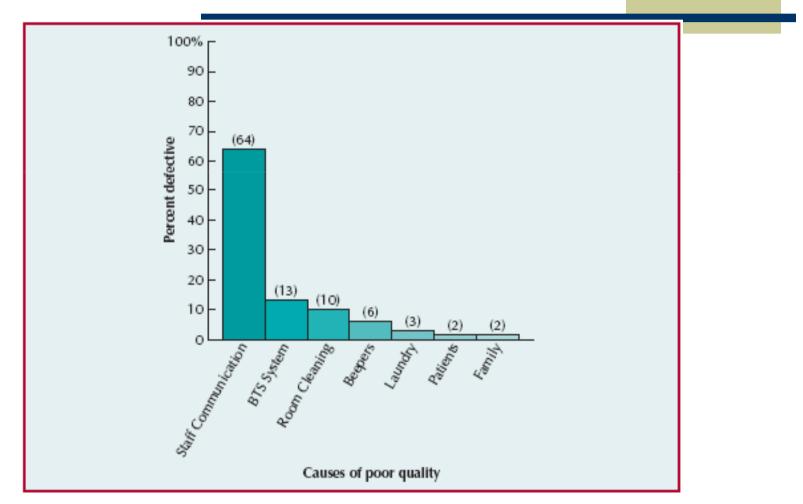

Check Sheets and Histograms

Check Sheet

A fact-finding tool for tallying the number of defects for a list of previously identified problem causes.

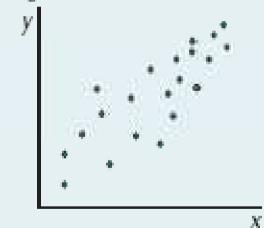
Histogram

A diagram showing the frequency of data related to a quality problem.


Pareto Analysis

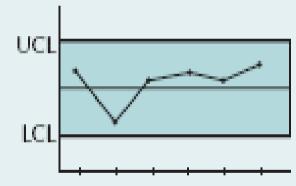
Pareto analysis

most quality problems result from a few causes


Cause	Number of Defects	Percentage	
Staff communication	83	64%	
BTS system	17	13	
Room cleaning	13	10	
Beepers	7	6	
Laundry	4	3	
Patients	3	2	
Family	3	2	
	130	100%	

Pareto Chart

Scatter Diagram


Scatter Diagram

A graph showing the relationship between two variables in a process; identifies a pattern that may cause a quality problem.

Control Chart

Statistical Process Control Chart

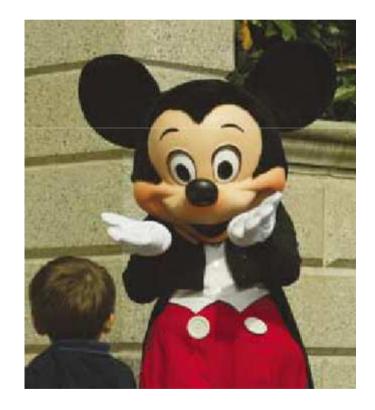
A chart with statistical upper and lower limits; if the process stays between these limits over time, it is in control and a problem does not exist.

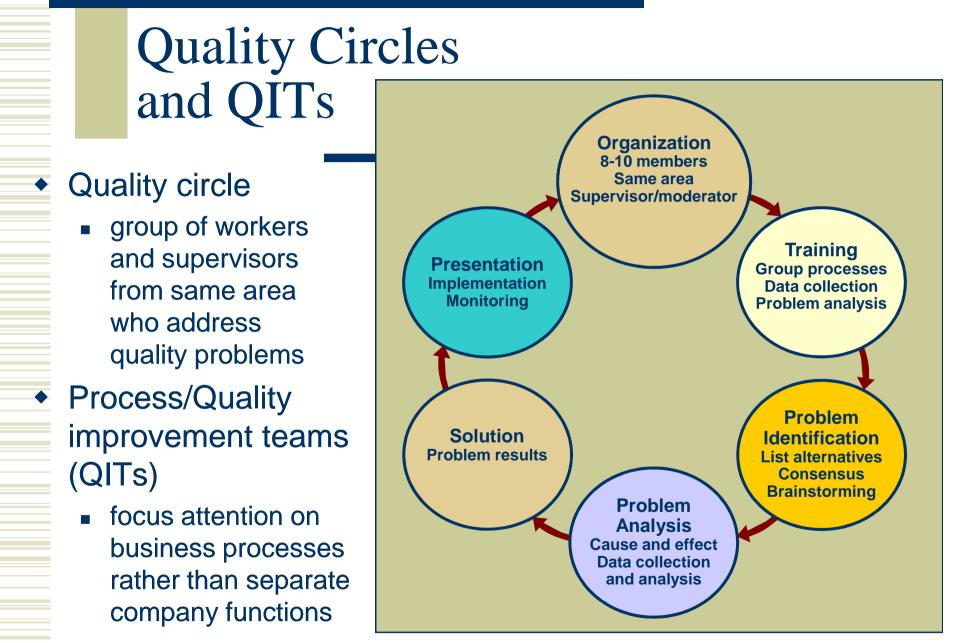
TQM and QMS

- Total Quality Management (TQM)
 - customer-oriented, leadership, strategic planning, employee responsibility, continuous improvement, cooperation, statistical methods, and training and education
- Quality Management System (QMS)
 - system to achieve customer satisfaction that complements other company systems

Focus of Quality Management— Customers

- TQM and QMSs
 - serve to achieve customer satisfaction
- Partnering
 - a relationship between a company and its supplier based on mutual quality standards
- Measuring customer satisfaction
 - Important component of any QMS
 - customer surveys, telephone interviews


Role of Employees in Quality Improvement


Participative problem solving

- employees involved in quality-management
- every employee has undergone extensive training to provide quality service to Disney's guests

Kaizen

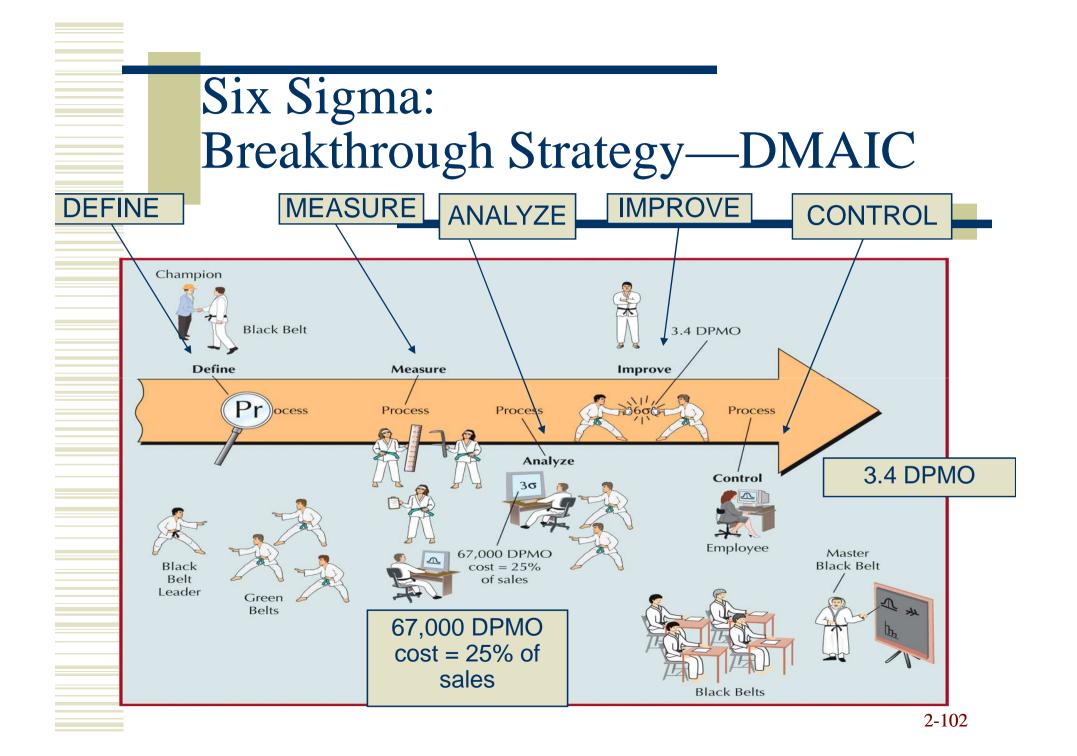
 involves everyone in process of continuous improvement

Quality in Services

- Service defects are not always easy to measure because service output is not usually a tangible item
- Services tend to be labor intensive
- Services and manufacturing companies have similar inputs but different processes and outputs

Quality Attributes in Services

- Principles of TQM apply equally well to services and manufacturing
- Timeliness
 - how quickly a service is provided?
- Benchmark
 - "best" level of quality achievement in one company that other companies seek to achieve



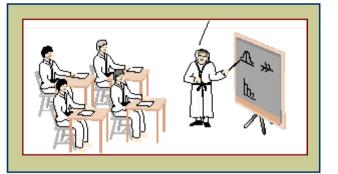
"quickest, friendliest, most accurate service available."

Six Sigma

- A process for developing and delivering virtually perfect products and services
- Measure of how much a process deviates from perfection
- 3.4 defects per million opportunities
 - Six Sigma Process
 - four basic steps of Six Sigma—align, mobilize, accelerate, and govern
 - Champion

an executive responsible for project success

Six Sigma: Black Belts and Green Belts



- Black Belt
 - project leader
- Master Black Belt
 - a teacher and mentor for Black Belts

Green Belts

 project team members

Six Sigma

- Design for Six Sigma (DFSS)
 - a systematic approach to designing products and processes that will achieve Six Sigma

Profitability

- typical criterion for selection Six Sigma project
- one of the factors distinguishing Six Sigma from TQM
- "Quality is not only free, it is an honest-to-everything profit maker."

Cost of Quality

- Cost of Achieving Good Quality
 - Prevention costs
 - costs incurred during product design
 - Appraisal costs
 - costs of measuring, testing, and analyzing
- Cost of Poor Quality
 - Internal failure costs
 - include scrap, rework, process failure, downtime, and price reductions
 - External failure costs
 - include complaints, returns, warranty claims, liability, and lost sales

Prevention Costs

- Quality planning costs
 - costs of developing and implementing quality management program
- Product-design costs
 - costs of designing products with quality characteristics
- Process costs
 - costs expended to make sure productive process conforms to quality specifications

- Training costs
 - costs of developing and putting on quality training programs for employees and management
- Information costs
 - costs of acquiring and maintaining data related to quality, and development and analysis of reports on quality performance

Appraisal Costs

- Inspection and testing
 - costs of testing and inspecting materials, parts, and product at various stages and at end of process

Test equipment costs

 costs of maintaining equipment used in testing quality characteristics of products

Operator costs

 costs of time spent by operators to gather data for testing product quality, to make equipment adjustments to maintain quality, and to stop work to assess quality

Internal Failure Costs

- Scrap costs
 - costs of poor-quality products that must be discarded, including labor, material, and indirect costs
- Rework costs
 - costs of fixing defective products to conform to quality specifications
- Process failure costs
 - costs of determining why production process is producing poor-quality products

- Process downtime costs
 - costs of shutting down productive process to fix problem
- Price-downgrading costs
 - costs of discounting poorquality products—that is, selling products as "seconds"

External Failure Costs

- Customer complaint costs
 - costs of investigating and satisfactorily responding to a customer complaint resulting from a poor-quality product
- Product return costs
 - costs of handling and replacing poor-quality products returned by customer
- Warranty claims costs
 - costs of complying with product warranties

- Product liability costs
 - litigation costs resulting from product liability and customer injury
- Lost sales costs
 - costs incurred because customers are dissatisfied with poor-quality products and do not make additional purchases

Measuring and Reporting Quality Costs

Index numbers

- ratios that measure quality costs against a base value
- Iabor index
 - ratio of quality cost to labor hours
- cost index
 - ratio of quality cost to manufacturing cost
- sales index
 - ratio of quality cost to sales
- production index
 - ratio of quality cost to units of final product

Quality-Cost Relationship

Cost of quality

- difference between price of nonconformance and conformance
- cost of doing things wrong
 - 20 to 35% of revenues
- cost of doing things right
 - 3 to 4% of revenues

Effect of Quality Management on Productivity

Productivity

ratio of output to input

Quality impact on productivity

- fewer defects increase output, and quality improvement reduces inputs
- Yield
 - a measure of productivity

Yield=(total input)(% good units) + (total input)(1-%good units)(% reworked)

or

Computing Product Cost per Unit

Product Cost

$$=\frac{(K_d)(I)+(K_r)(R)}{Y}$$

where: K_d = direct manufacturing cost per unit I = input K_r = rework cost per unit R = reworked units Y = yield

Computing Product Yield for Multistage Processes

 $Y = (I)(\% g_1)(\% g_2) \dots (\% g_n)$

where: I = input of items to the production process that willresult in finished products $<math>g_i = good-quality$, work-in-process products at stage *i*

Quality–Productivity Ratio

QPR

QPR =

 productivity index that includes productivity and quality costs

(good-quality units)

(100)

(input) (processing cost) + (reworked units) (rework cost)

Malcolm Baldrige Award

- Created in 1987 to stimulate growth of quality management in United States
- Categories
 - Leadership
 - Information and analysis
 - Strategic planning
 - Human resource focus
 - Process management
 - Business results
 - Customer and market focus

Other Awards for Quality

- National individual awards
 - Armand V. Feigenbaum Medal
 - Deming Medal
 - E. Jack Lancaster Medal
 - Edwards Medal
 - Shewart Medal
 - Ishikawa Medal

- International awards
 - European Quality Award
 - Canadian Quality Award
 - Australian Business Excellence Award
 - Deming Prize from Japan

ISO 9000

 A set of procedures and policies for international quality certification of suppliers

- Standards
 - ISO 9000:2000
 - Quality Management Systems—Fundamentals and Vocabulary
 - defines fundamental terms and definitions used in ISO 9000 family

- ISO 9001:2000
 - Quality Management Systems—Requirements
 - standard to assess ability to achieve customer satisfaction
- ISO 9004:2000
 - Quality Management Systems—Guidelines for Performance Improvements
 - guidance to a company for continual improvement of its quality-management system

ISO 9000 Certification, Implications, and Registrars

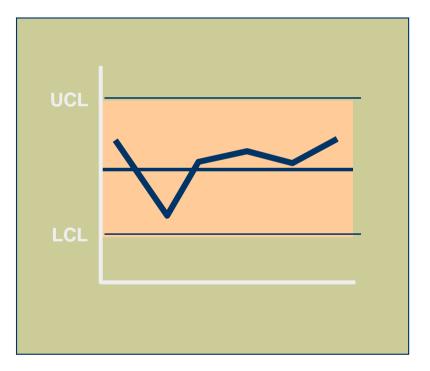
- ISO 9001:2000—only standard that carries thirdparty certification
- Many overseas companies will not do business with a supplier unless it has ISO 9000 certification
- ISO 9000 accreditation
- ISO registrars

Chapter 3

Statistical Process Control

Operations Management

Roberta Russell & Bernard W. Taylor, III



Lecture Outline

- Basics of Statistical Process Control
- Control Charts
- Control Charts for Attributes
- Control Charts for Variables
- Control Chart Patterns
- SPC with Excel and OM Tools
- Process Capability

Basics of Statistical Process Control

- Statistical Process Control (SPC)
 - monitoring production process to detect and prevent poor quality
 - Sample
 - subset of items produced to use for inspection
- Control Charts
 - process is within statistical control limits

Basics of Statistical Process Control (cont.)

Random

- inherent in a process
- depends on equipment and machinery, engineering, operator, and system of measurement
- natural occurrences

- Non-Random
 - special causes
 - identifiable and correctable
 - include equipment out of adjustment, defective materials, changes in parts or materials, broken machinery or equipment, operator fatigue or poor work methods, or errors due to lack of training

SPC in Quality Management

- SPC
 - tool for identifying problems in order to make improvements
 - contributes to the TQM goal of continuous improvements

Quality Measures: Attributes and Variables

Attribute

- a product characteristic that can be evaluated with a discrete response
- good bad; yes no

Variable measure

- a product characteristic that is continuous and can be measured
- weight length

SPC Applied to Services

- Nature of defect is different in services
- Service defect is a failure to meet customer requirements
- Monitor time and customer satisfaction

SPC Applied to Services (cont.)

Hospitals

 timeliness and quickness of care, staff responses to requests, accuracy of lab tests, cleanliness, courtesy, accuracy of paperwork, speed of admittance and checkouts

Grocery stores

 waiting time to check out, frequency of out-of-stock items, quality of food items, cleanliness, customer complaints, checkout register errors

Airlines

 flight delays, lost luggage and luggage handling, waiting time at ticket counters and check-in, agent and flight attendant courtesy, accurate flight information, passenger cabin cleanliness and maintenance

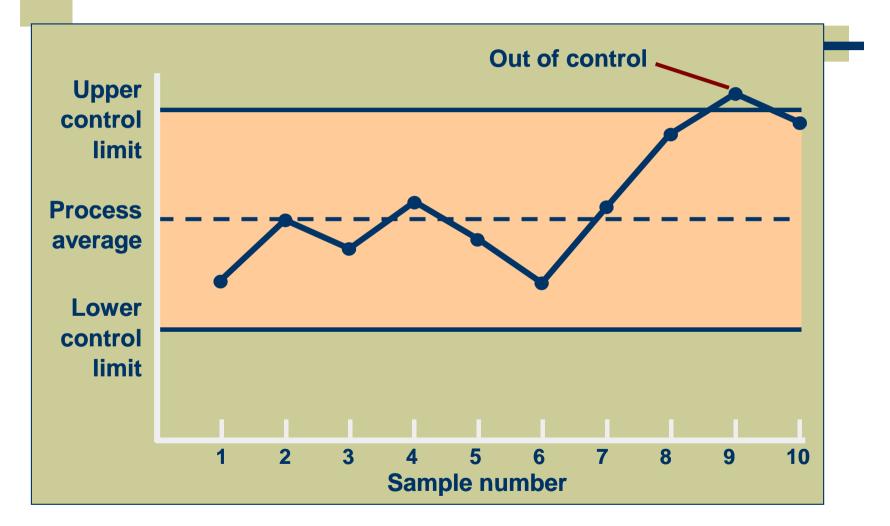
SPC Applied to Services (cont.)

Fast-food restaurants

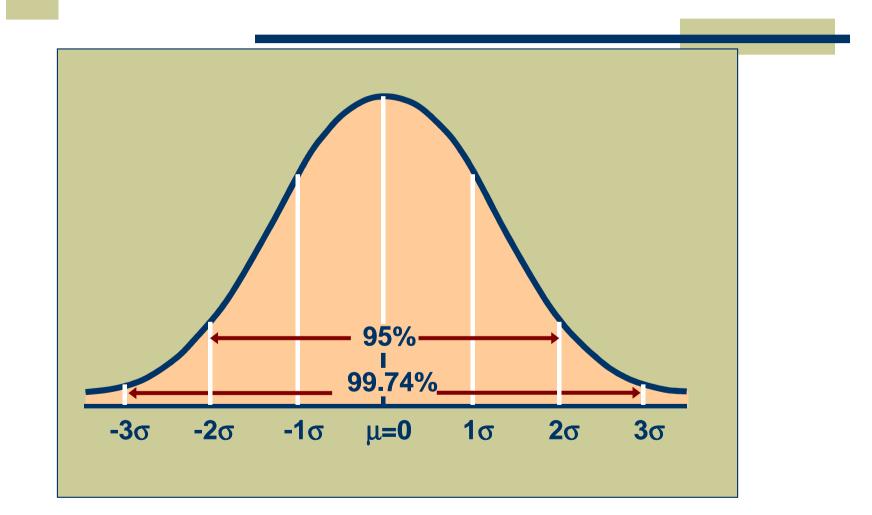
- waiting time for service, customer complaints, cleanliness, food quality, order accuracy, employee courtesy
- Catalogue-order companies
 - order accuracy, operator knowledge and courtesy, packaging, delivery time, phone order waiting time
- Insurance companies
 - billing accuracy, timeliness of claims processing, agent availability and response time

Where to Use Control Charts

- Process has a tendency to go out of control
- Process is particularly harmful and costly if it goes out of control
- Examples


- at the beginning of a process because it is a waste of time and money to begin production process with bad supplies
- before a costly or irreversible point, after which product is difficult to rework or correct
- before and after assembly or painting operations that might cover defects
- before the outgoing final product or service is delivered

Control Charts


- A graph that establishes control limits of a process
- Control limits
 - upper and lower bands of a control chart

- Types of charts
 - Attributes
 - p-chart
 - c-chart
 - Variables
 - mean (x bar chart)
 - range (R-chart)

Process Control Chart

Normal Distribution

A Process Is in Control If ...

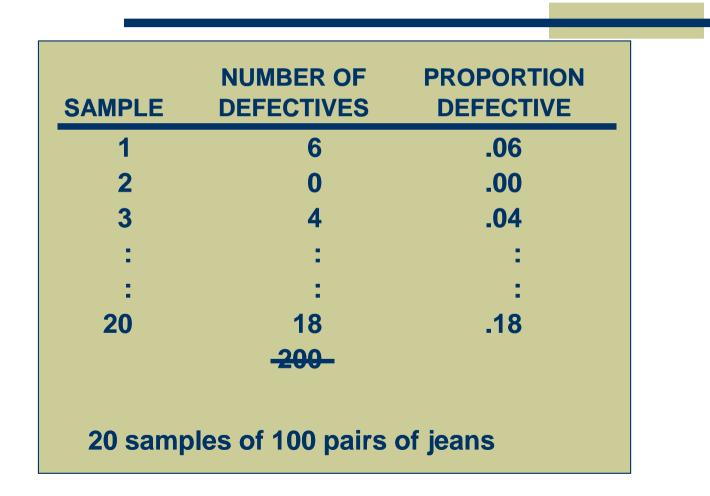
- 1. ... no sample points outside limits
- 2. ... most points near process average
- 3. ... about equal number of points above and below centerline
- 4. ... points appear randomly distributed

Control Charts for Attributes

p-chart

- uses portion defective in a sample
- c-chart
 - uses number of defective items in a sample

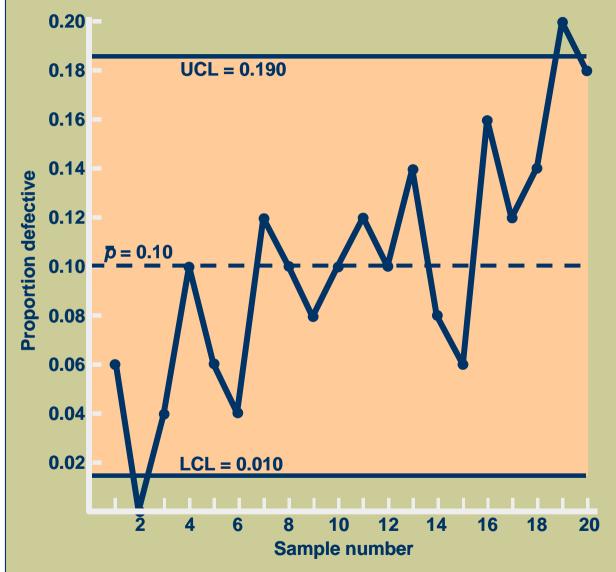
p-Chart


 $UCL = \overline{p} + z\sigma_p$ $LCL = \overline{p} - z\sigma_p$

- *z* = number of standard deviations from process average
- \overline{p} = sample proportion defective; an estimate of process average

 σ_p = standard deviation of sample proportion

$$\sigma_p = \sqrt{\frac{p(1-p)}{n}}$$


Construction of p-Chart

Construction of p-Chart (cont.)

total defectives total sample observations = 200 / 20(100) = 0.10 **p** = -UCL = $\bar{p} + z \sqrt{\frac{p(1-p)}{n}} = 0.10 + 3 \sqrt{\frac{0.10(1-0.10)}{100}}$ UCL = 0.190LCL = $\bar{p} - z \sqrt{\frac{p(1-p)}{n}} = 0.10 - 3 \sqrt{\frac{0.10(1-0.10)}{100}}$ LCL = 0.010

Construction of p-Chart (cont.)

c-Chart

$$UCL = \overline{c} + z\sigma_c$$
$$LCL = \overline{c} - z\sigma_c$$

$$\sigma_c = \sqrt{\overline{c}}$$

where

c = number of defects per sample

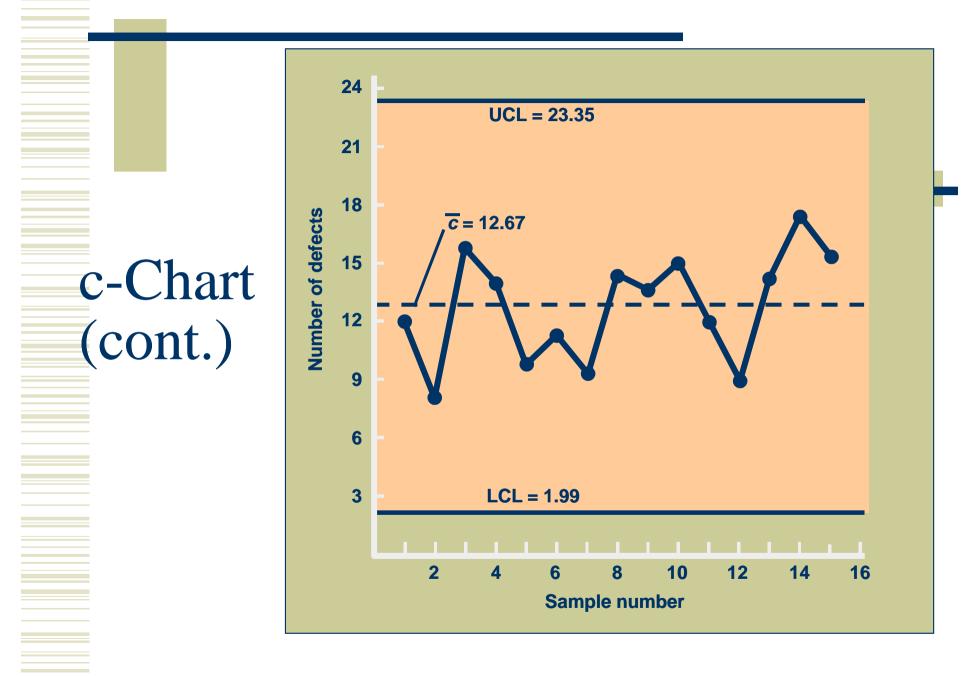
c-Chart (cont.)

Number of defects in 15 sample rooms

	NUMBER			
SAMPLE	OF			
	DEFECTS			
1	12			
2	8			
3	16			
100	:			
100	:			
15	15			
	1 <u>90</u>			

$$\overline{c} = \frac{190}{15} = 12.67$$

$$UCL = \overline{c} + z\sigma_{c}$$


$$= 12.67 + 3 \sqrt{2.67}$$

$$= 23.35$$

$$LCL = \overline{c} - z\sigma_{c}$$

$$= 12.67 - 3 \sqrt{2.67}$$

$$= 1.99$$

Control Charts for Variables

- Range chart (R-Chart)
 - uses amount of dispersion in a sample
- Mean chart (x -Chart)
 - uses process average of a sample

UCL =
$$\overline{x} + z\sigma_x$$
 LCL = $\overline{x} - z\sigma_x$
 $\overline{x} = \frac{x_1 + x_2 + \dots + x_n}{n}$
where
 $\overline{x} = average of sample means$

x-bar Chart Example: Standard Deviation Known (cont.)

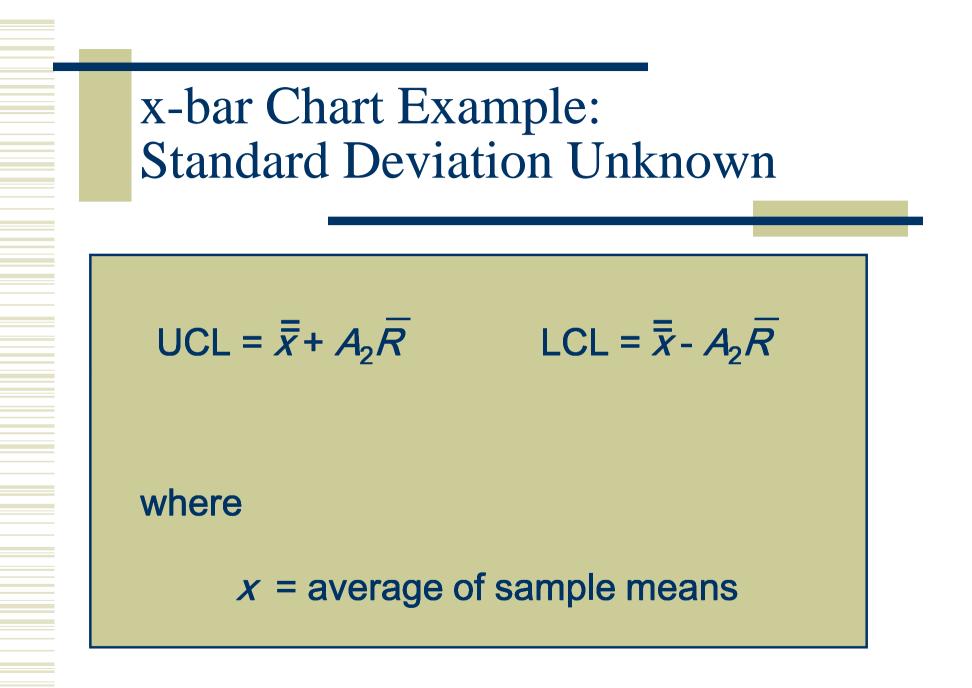
	Obse					
Sample k	1	2	3	4	5	\overline{x}
1	5.02	5.01	4.94	4.99	4.96	4.98
2	5.01	5.03	5.07	4.95	4.96	5.00
3	4.99	5.00	4.93	4.92	4.99	4.97
4	5.03	4.91	5.01	4.98	4.89	4.96
5	4.95	4.92	5.03	5.05	5.01	4.99
6	4.97	5.06	5.06	4.96	5.03	5.01
7	5.05	5.01	5.10	4.96	4.99	5.02
8	5.09	5.10	5.00	4.99	5.08	5.05
9	5.14	5.10	4.99	5.08	5.09	5.08
10	5.01	4.98	5.08	5.07	4.99	5.03
						50.09

x-bar Chart Example: Standard Deviation Known (cont.)

$$\overline{\overline{x}} = \frac{50.09}{10} = 5.01$$

$$UCL = \overline{\overline{x}} + z\sigma_{\overline{x}}$$

$$= 5.01 + 3(.08/\sqrt{10})$$


$$= 5.09$$

$$LCL = \overline{\overline{x}} - z\sigma_{\overline{x}}$$

$$= 5.01 - 3(.08/\sqrt{10})$$

$$= 4.93$$

3-145

Control Limits

Sample Size N	Factor for x -Chart A ₂	Factors f D ₃	or R-Chart D ₄
2	1.88	0	3.27
3	1.02	0	2.57
4	0.73	0	2.28
5	0.58	0	2.11
6	0.48	0	2.00
7	0.42	0.08	1.92
8	0.37	0.14	1.86
9	0.34	0.18	1.82
10	0.31	0.22	1.78
11	0.29	0.26	1.74
12	0.27	0.28	1.72
13	0.25	0.31	1.69
14	0.24	0.33	1.67
15	0.22	0.35	1.65
16	0.21	0.36	1.64
17	0.20	0.38	1.62
18	0.19	0.39	1.61
19	0.19	0.40	1.60
20	0.18	0.41	1.59
21	0.17	0.43	1.58
22	0.17	0.43	1.57
23	0.16	0.44	1.56
24	0.16	0.45	1.55
25	0.15	0.46	1.54
			3-147

x-bar Chart Example: Standard Deviation Unknown

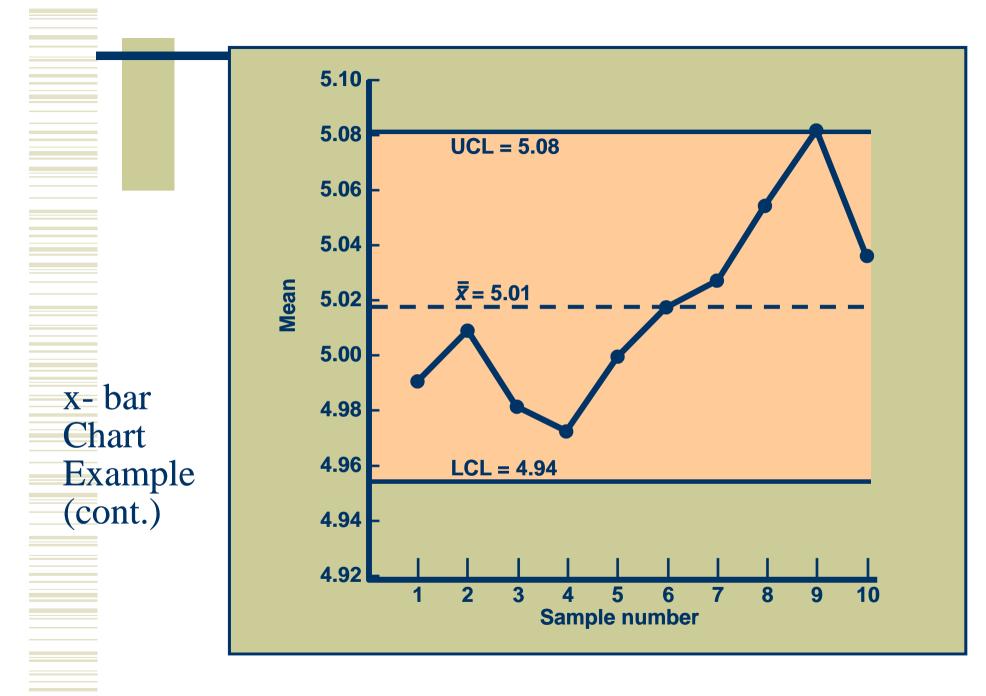
OFDVATIONO (OLID. DINO DIAMETED

	OBSE	RVAII	ONS (S	LIP- RI	NG DIA	METER	Ι, CM)
SAMPLE k	1	2	3	4	5	x	R
1	5.02	5.01	4.94	4.99	4.96	4.98	0.08
2	5.01	5.03	5.07	4.95	4.96	5.00	0.12
3	4.99	5.00	4.93	4.92	4.99	4.97	0.08
4	5.03	4.91	5.01	4.98	4.89	4.96	0.14
5	4.95	4.92	5.03	5.05	5.01	4.99	0.13
6	4.97	5.06	5.06	4.96	5.03	5.01	0.10
7	5.05	5.01	5.10	4.96	4.99	5.02	0.14
8	5.09	5.10	5.00	4.99	5.08	5.05	0.11
9	5.14	5.10	4.99	5.08	5.09	5.08	0.15
10	5.01	4.98	5.08	5.07	4.99	5.03	0.10

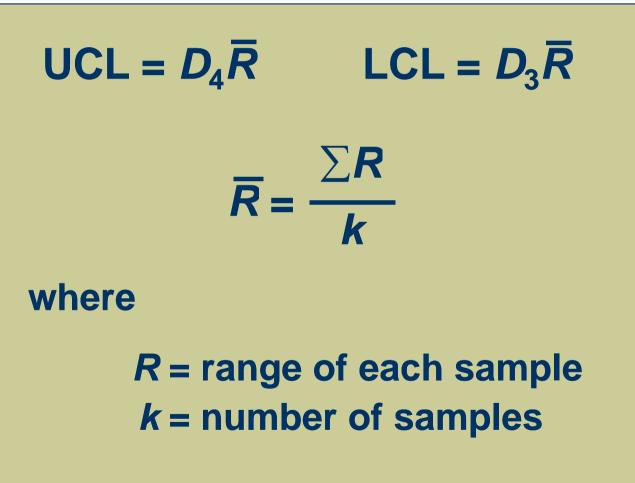
Example 15.4

50.09 1.15

x-bar Chart Example: Standard Deviation Unknown (cont.)


$$\overline{R} = \frac{\Sigma R}{k} = \frac{1.15}{10} = 0.115$$

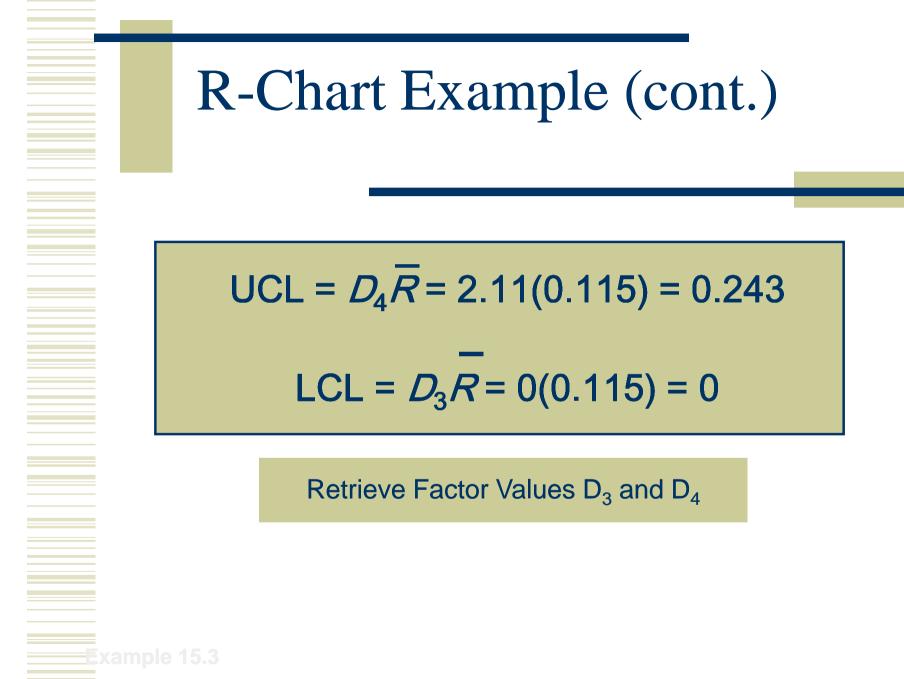
$$\bar{x} = \frac{\sum \bar{x}}{k} = \frac{50.095.01 \text{ cm}}{10}$$


UCL = $x \neq A_2R = 5.01 + (0.58)(0.115) = 5.08$

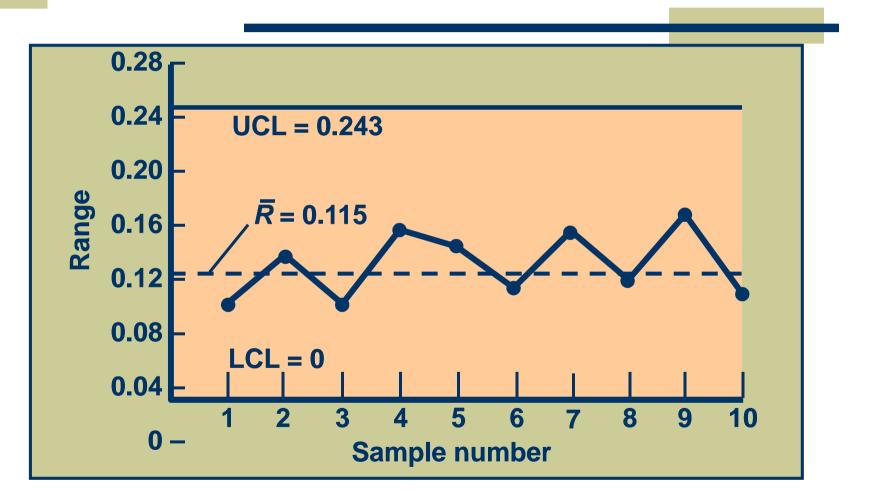
 $LCL = x = A_2R = 5.01 - (0.58)(0.115) = 4.94$

Retrieve Factor Value A₂

R- Chart



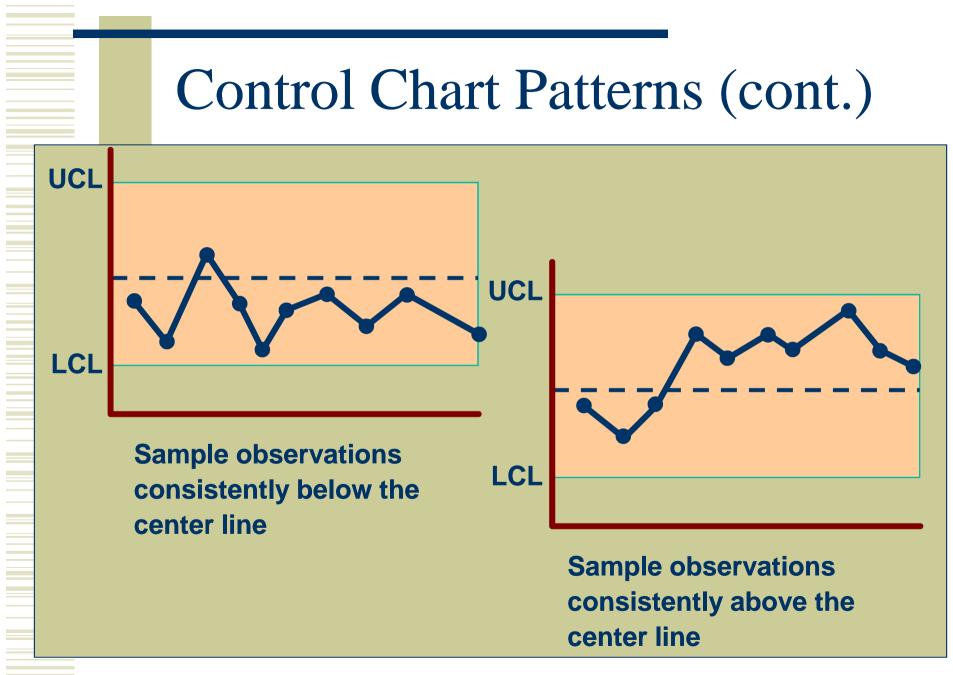
R-Chart Example


	OBSE	ERVATI	ONS (S	LIP-RIN	IG DIAI	METER	, CM)
SAMPLE k	1	2	3	4	5	x	R
1	5.02	5.01	4.94	4.99	4.96	4.98	0.08
2	5.01	5.03	5.07	4.95	4.96	5.00	0.12
3	4.99	5.00	4.93	4.92	4.99	4.97	0.08
4	5.03	4.91	5.01	4.98	4.89	4.96	0.14
5	4.95	4.92	5.03	5.05	5.01	4.99	0.13
6	4.97	5.06	5.06	4.96	5.03	5.01	0.10
7	5.05	5.01	5.10	4.96	4.99	5.02	0.14
8	5.09	5.10	5.00	4.99	5.08	5.05	0.11
9	5.14	5.10	4.99	5.08	5.09	5.08	0.15
10	5.01	4.98	5.08	5.07	4.99	5.03	0.10

Example 15.3

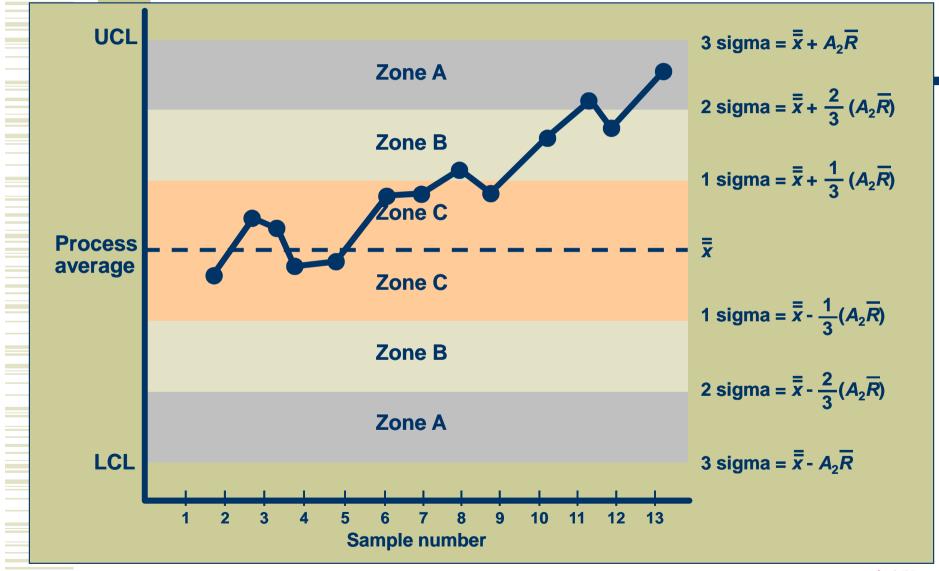
50.09 1.15

R-Chart Example (cont.)


Using x- bar and R-Charts Together


- Process average and process variability must be in control
- It is possible for samples to have very narrow ranges, but their averages might be beyond control limits
- It is possible for sample averages to be in control, but ranges might be very large
- It is possible for an R-chart to exhibit a distinct downward trend, suggesting some nonrandom cause is reducing variation

Control Chart Patterns


Run

- sequence of sample values that display same characteristic
- Pattern test
 - determines if observations within limits of a control chart display a nonrandom pattern
- To identify a pattern:
- 8 consecutive points on one side of the center line
- 8 consecutive points up or down
- 14 points alternating up or down
- 2 out of 3 consecutive points in zone A (on one side of center line)
- 4 out of 5 consecutive points in zone A or B (on one side of center line)

Zones for Pattern Tests

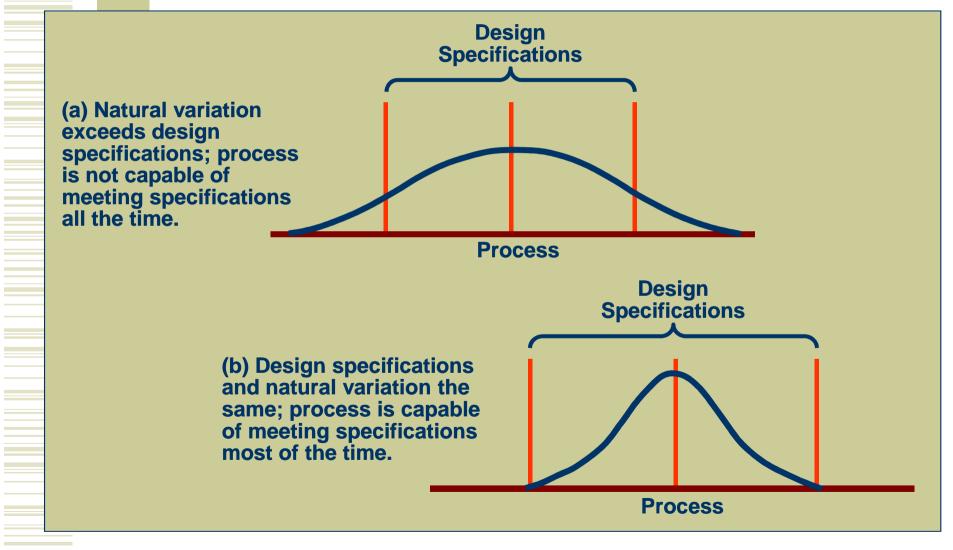
Performing a Pattern Test

SAMPLE	X	ABOVE/BELOW	UP/DOWN	ZONE
1	4.98	В	_	В
2	5.00	B	U	С
3	4.95	B	D	Α
4	4.96	B	D	Α
5	4.99	B	U	С
6	5.01	—	U	С
7	5.02	Α	U	С
8	5.05	Α	U	В
9	5.08	Α	U	Α
10	5.03	Α	D	В

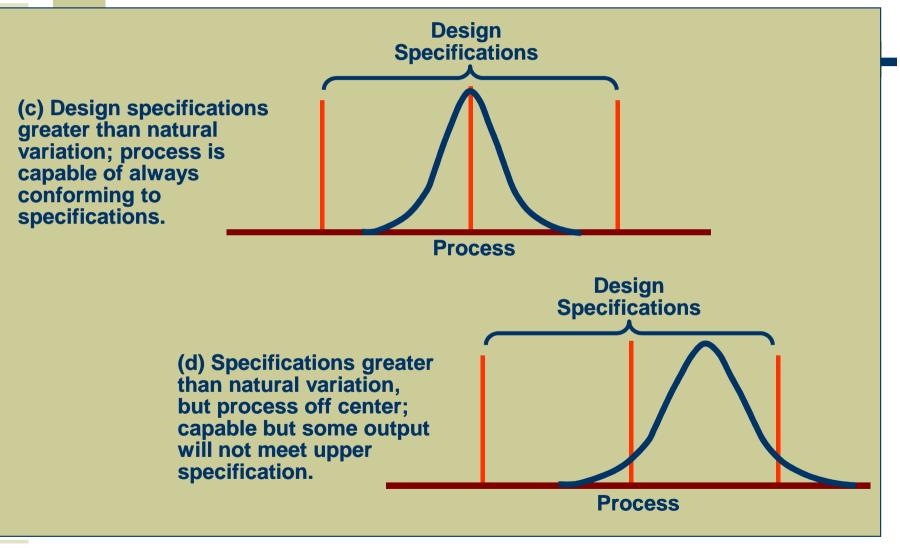
Sample Size Determination

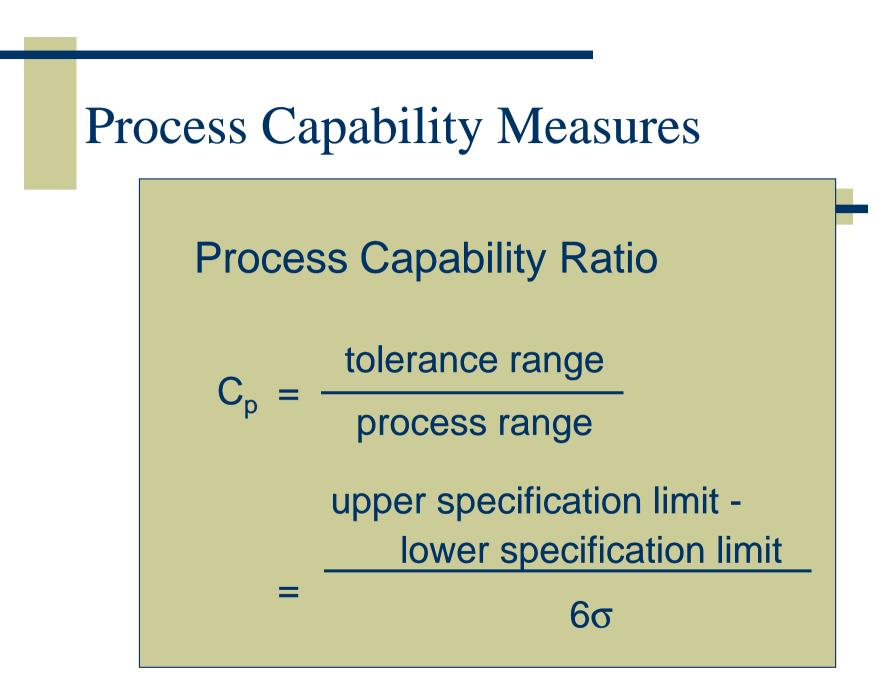
- Attribute charts require larger sample sizes
 - 50 to 100 parts in a sample
- Variable charts require smaller samples
 - 2 to 10 parts in a sample

SPC with Excel


6					Changes	End Review						· B I U E E I B \$ %, % 综 保 使 □· &· ▲·. Click on "ChartWizard"
	F26	▼ J× B	=SUM(F6	(F25)	E	F	G	н	I	J	K	
1	1010 CONT 11	e 3.1. Cons				10 Nort						to construct control chart
2											1	
3		Proportion		i	1	Number of						I4 + 3*SQRT(I4*(1-I4)/100)
	Sample		P	UCL	LCL	Defectives		$\overline{p} =$	0.10	-		
5	0		0.10	0.19	0.01			UCL =	0.19		1 1	
6	1	0.06	0.10	0.19	0.01	6		LCL =	0.01 -			=I4 - 3*SQRT(I4*(1-I4)/100)
7	2	0.00	0.10	0.19	0.01	0						-11) SQN1(11 (1-11)/100)
8	3	0.04	0.10	0.19	0.01	4						
9	4	0.10	0.10	0.19	0.01	10					_	
10	5	0.06	0.10	0.19	0.01	6		0.25	1			
11	6	0.04	0.10	0.19	0.01	4						
12	7	0.12	0.10	0.19	0.01	12					UCL = 0	0.19
13	8	0.10	0.10	0.19	0.01	10		0.2	-	2 2		<u> </u>
14	9	0.08	0.10	0.19	0.01	8						
15	10	0.10	0.10	0.19	0.01	10		i.				• / • · · · · · · · · · · · · · · · · ·
16	11	0.12	0.10	0.19	0.01	12		§ 0.15	1			
17	12	0.10	0.10	0.19	0.01	10		Proportion Defective	$\overline{p} = 0$	10	*	
18 19	13	0.14	0.10	0.19	0.01	14		- 1	p - 0		\mathbf{N}	
19 20	14	0.08	0.10	0.19	0.01	6		2 U.1		X · · ·)		
20	16	0.06	0.10	0.19	0.01	16		Pre-		\setminus 1	•	
21	16	0.16	0.10	0.19	0.01	12		0.05	< /	×1		
22	18	0.12	0.10	0.19	0.01	14		0.05	1 \$	¥	LCL =	0.01
24	19	0.14	0.10	0.19	0.01	20					LCL =	0.01
25	20	0.18	0.10	0.19	0.01	18		0				
26	20	0.10	0.10	0.10	0.07	200			1 2 3	4 5 6	7 8 9	10 11 12 13 14 15 16 17 18 19 20
27		1 11									Sar	ample Number
28											1900	
29		_			V		L					
30		0	1	1		. 1						
		C	al			opied						

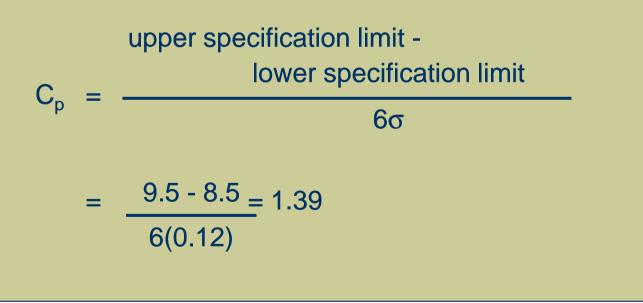
	Aicrosoft Excel -	Exhibit 3	2 SPC vis																			
8	File Edit View		000000000000000000000000000000000000000	11	<u>W</u> indow	Help															Type a question for I	help
		D. **	X B C	1-0	0 - 0 -	.Σ	· 21 31	10 10	0% - 8	Arial		+ 1	• 0	B /	u = =	= 国	\$%,	00. 00. 0.+ 00.	使使	H • 3	· A · .	
12	ta ta 🗷 😘 i					The second second		_														
	E2 👻	f.	and a provide second																			_
1000	A	В	C	D	E	F	G	Н	1	J	к	L	M	N	0	Р	Q	R	S	Т	U	
1	Xbar and R C	Charts			OM Stud	lent - Exa 1	mples 3.4	and 3.5					-									
	Input:		-		Output:	1			Table	Values												-
	No. of samples						Range		N	5	-											-
5	Sample size	5	-		UCL Mean	5.08	0.24	-	A2 D3	0.577				ons for ea n shaded								+-
7					LCL	4.94	0.00		D4	2.115												1
8					1		0.1			01			-					0			10.01	-
9		<u> </u>		bservatio	ons	1	Calcu	lations	Xbai	r Chart	R-C	hart						Control	Mean	Upper	bar and R Charts	+
		~				1000	Sample	aed.	100000		20000				hart form			Sample		Range,	Lower Range,	2
0	Sample	1	2	3	4	5	Mean	Range	UCL	LCL	UCL	LCL		LCL	$= x - A \overline{R}$			size, n	A2	D4	D3	-
1	2	5.02	5.01	4.94 5.07	4.99	4.96	4.98	0.08	5.08	4.94	0.243	0	-	-	÷.			2	1.88	3.268	0	+
3	3	4.99	5.00	4.93	4.92	4.99	4.97	0.08	5.08	4.94	0.243	Ő		7 800				4	0.729	2.282	Ö	
4	4	5.03	4.91	5.01	4.98	4.89	4.96	0.14	5.08	4.94	0.243	0		UCI	$= \overline{x} + A, \overline{A}$	C		5	0.577	2.115	0	
5	5	4.95	4.92 5.06	5.03	5.05	5.01	4.99	0.13	5.08	4.94	0.243	0	-	Deah	art formula			6	0.483	2.004	0	+
7	7	5.05	5.06	5.00	4.96	4,99	5.02	0.10	5.08	4.94	0.243	0	1			5	-	8	0.419	1.864	0.076	+
8	8	5.09	5.10	5.00	4.99	5.08	5.05	0.11	5.08	4.94	0.243	0			$L = D_{J}\overline{R}$			9	0.337	1.816	0.184	1
9	9	5.14	5.10	4.99	5.08	5.09	5.08	0.15	5.08	4.94	0.243	0		UC	$L = D_4 \overline{R}$		_	10	0.308	1.777	0.223	-
20	10	5.01	4.98	5.08	5.07	4.99 Mean	5.03	0.10	5.08	4.94	0.243	0	-		1			11 12	0.285	1.744	0.256	-
2						Mean	3.01	0.115										13	0.249	1.692	0.308	+
3													_					14	0.235	1.671	0.329	
4			>	(-Bar							Range							15	0.223	1.652	0.348	-
5								0.3	•						-	-		16 17	0.212	1.636	0.364	+
7	5.10							0.5	°									18	0.194	1.608	0.392	1
8	5.05					1		0.2	5						_			19	0.187	1.596	0.404	
9						-	*	0.2	•—							_	-	20	0.180	1.586	0.414	+
31	€ 5.00	~	1	N	~		_	-										21	0.173	1.575	0.425	+
2	₩ 4.95		**					3 0.1	5		A	/						23	0.162	1.557	0.443	1
33	4.55							0.1		\sim	/	\checkmark		*	*			24	0.157	1.548	0.452	
34 35	4.90							0.0		*					-		-	25	0.153	1.541	0.459	-
	4,85							0.0.														+-

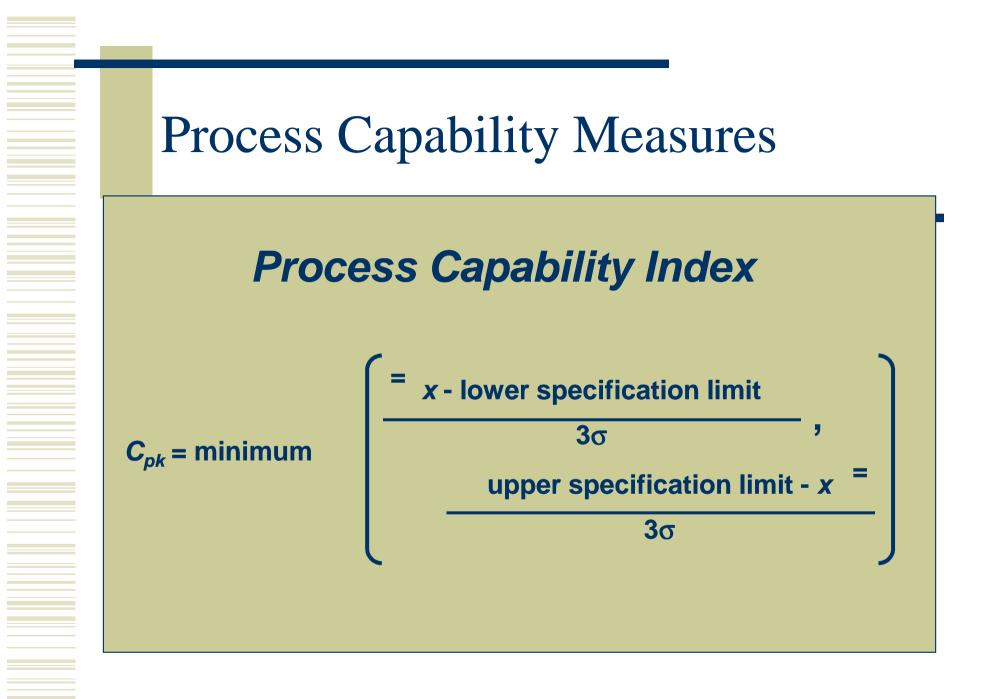

Process Capability


- Tolerances
 - design specifications reflecting product requirements
- Process capability
 - range of natural variability in a process what we measure with control charts

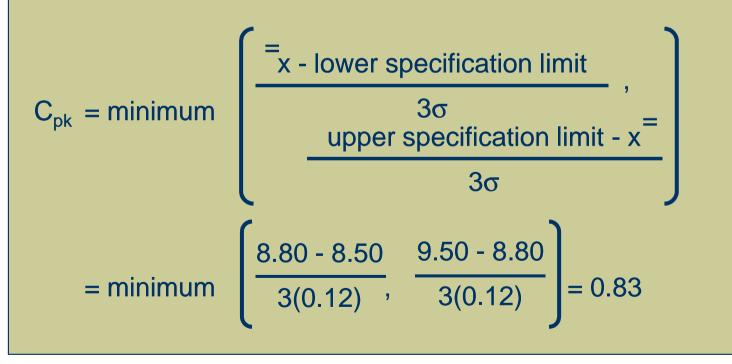
Process Capability (cont.)

Process Capability (cont.)





3-167


Computing C_p

Net weight specification = $9.0 \text{ oz} \pm 0.5 \text{ oz}$ Process mean = 8.80 ozProcess standard deviation = 0.12 oz

Net weight specification = $9.0 \text{ oz} \pm 0.5 \text{ oz}$ Process mean = 8.80 ozProcess standard deviation = 0.12 oz

Process Capability with Excel

$\begin{array}{c c c c c c c c c c c c c c c c c c c $		+ 10 +
D16 Image: A mathematical system of the		
ABCDEFGHI1Examples 3.7 and 3.8: Process Capability2345Process Capability Ratio:6Upper limit = 9.57Lower limit = 8.58Standard deviation = 0.129 C_P = 1.3910 C_P = 1.3911Process Capability Index:12Process mean = 8.8013Design target = 9.00		
1 Examples 3.7 and 3.8: Process Capability 2 3 3 4 5 Process Capability Ratio: 6 Upper limit = 9.5 7 Lower limit = 8.5 8 Standard deviation = 0.12 9 $C_P = 1.39$ 10 $Process Capability Index:$ 11 Process mean = 8.80 13 Design target = 9.00		
2 3 4 5 7 6 7 10 11 9 12 12 13 13 14 14 15 15 16 17 17 17 17 17 18 19 10 10 10 10 10 10 10 10 10 10	J	K
2 3 4 5 7 6 7 10 11 9 12 12 13 13 14 14 15 15 16 17 17 17 17 17 18 19 10 10 10 10 10 10 10 10 10 10		
3 4 4 5 5 Process Capability Ratio: 6 Upper limit = 9.5 7 Lower limit = 8.5 8 Standard deviation = 0.12 9 $C_P = 1.39$ 10 $=(D6-D7)/(6*D8)$ 11 Process Capability Index: 12 Process mean = 8.80 13 Design target = 9.00		
4 6 Process Capability Ratio: 6 Upper limit = 9.5 7 Lower limit = 8.5 8 Standard deviation = 0.12 9 $C_P = 1.39$ 10 $C_P = 1.39$ 11 Process Capability Index: 12 Process mean = 8.80 13 Design target = 9.00		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
Image: Top Standard deviation 8.5 8 Standard deviation = 0.12 9 $C_P = 1.39$ $=(D6-D7)/(6*D8)$ 10 Process Capability Index: 12 Process mean = 8.80 13 Design target = 9.00		
8 Standard deviation = 0.12 9 C_P = 1.39 10 =(D6-D7)/(6*D8) 11 Process Capability Index: 12 Process mean = 13 Design target =		
9 $C_P = 1.39$ $=(D6-D7)/(6*D8)$ 10 $Process Capability Index:$ 12 Process mean = 8.80 13 Design target = 9.00		
Process Capability Index: 12 Process mean = 8.80 13 Design target = 9.00	~	_
Process Capability Index: 12 Process mean = 8.80 13 Design target = 9.00	8)	
Process mean = 8.80 13 Design target = 9.00	~/	
13 Design target = 9.00		
Televence many = 0.50		
		-
15 Standard deviation = 0.12		
16 Cpk = 0.83 - see formula bar		

Process Capability with Excel and OM Tools

	Ele Edit	View	khibit3.4.ProcessCapab Insert Format Iools D 3. ♥ 3. ₪ 📾 + 🛷	ata <u>W</u> ind	dow Help
	e	8 6 0			
			Q 🗸 🔥 🖷 🖽 🗸 🛇	1801-0010	
ER	2a 2a C		LAR AL		····································
			1 2 B @ YelReply 1	with <u>Change</u>	jes Egd Review
_	H35		f*		
	A	B	C	D	E F G H I J K L
1	Proces	s Capa	DIIITY		OM Student - Examples 3.7 and 3.8
2				-	
3			and the first sector sectors and		3.500 T Process distr
	Input:	-	Design target =		3000 + / \ Inner Snec
5		0)esign tolerance (+/-) =	0.50	
6					2.500 + / /Lower Spec
7		-	Process mean =	8.80	
8		Proces	ss standard deviation =	0.12	
9		C		-	1.500 - / \
10 11	-		Input the design target an		1.000 - /
12		10	elerance, the process me and standard deviation.	san	
13			and standard deviation.		0.500 -
and a second					
14	-	1			
14 15	Output:		Upper spec limit =	9.50	8.200 8.400 8.600 8.800 9.000 9.200 9.400 9.600
14 15 16	Output:		Upper spec limit = Lower spec limit =	9.50 8.50	
14 15	Output:		Upper spec limit = Lower spec limit =	-	
14 15 16 17	Output:		Lower spec limit =	8.50	Process Capability Ratio
14 15 16 17 18	Output:			8.50 1.39	
14 15 16 17 18 19	Output:		Lower spec limit = Cp =	8.50 1.39	Process Capability Ratio $C_p = \frac{\text{upper specification limit} - lower specification limit}{6\sigma}$
14 15 16 17 18 19 20	Output:		Lower spec limit = Cp =	8.50 1.39	Process Capability Ratio
14 15 16 17 18 19 20 21	Output:		Lower spec limit = Cp =	8.50 1.39	Process Capability Ratio $C_p = \frac{\text{upper specification limit} - lower specification limit}{6\sigma}$ Process Capability Index
14 15 16 17 18 19 20 21 22 23 24	Output:		Lower spec limit = Cp =	8.50 1.39	Process Capability Ratio $C_p = \frac{\text{upper specification limit} - lower specification limit}{6\sigma}$ Process Capability Index
14 15 16 17 18 19 20 21 22 23	Output:		Lower spec limit = Cp =	8.50 1.39	Process Capability Ratio $C_p = \frac{\text{upper specification limit} - lower specification limit}{6\sigma}$

Chapter 3 Supplement

Acceptance Sampling

Operations Management

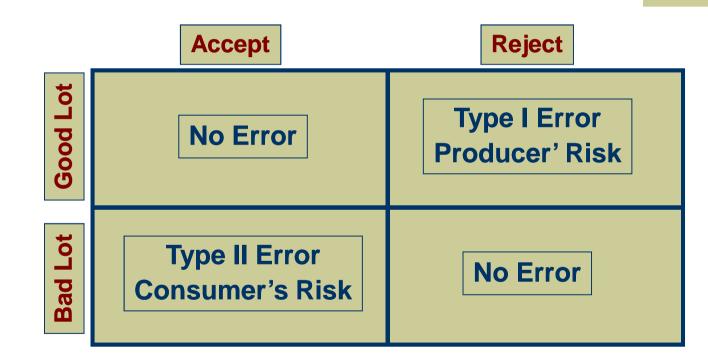
Roberta Russell & Bernard W. Taylor, III

Lecture Outline

- Single-Sample Attribute Plan
- Operating Characteristic Curve
- Developing a Sampling Plan with Excel
- Average Outgoing Quality
- Double and Multiple-Sampling Plans

Acceptance Sampling

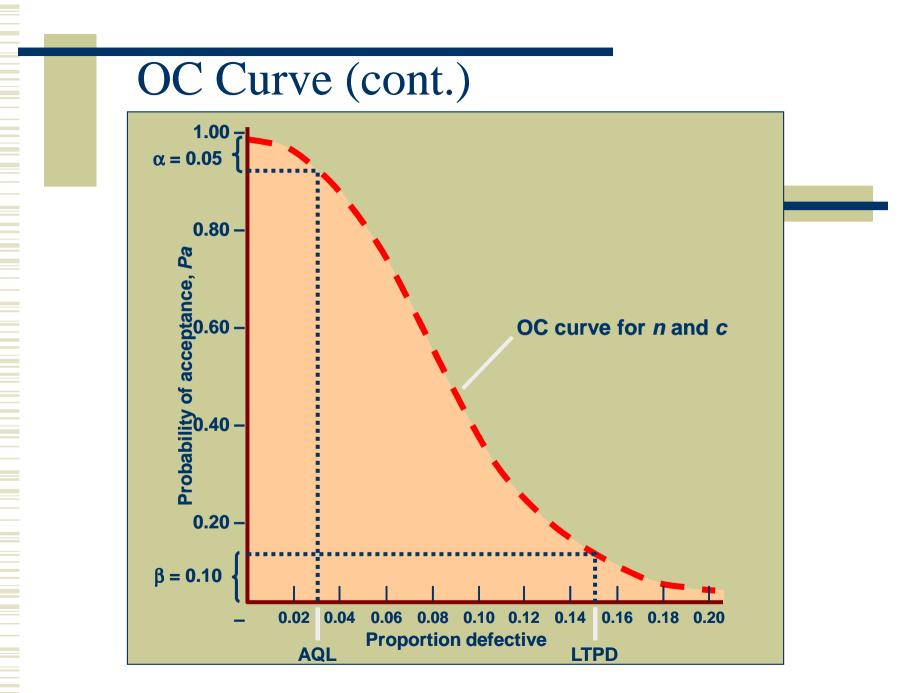
- Accepting or rejecting a production lot based on the number of defects in a sample
- Not consistent with TQM or Zero Defects philosophy
 - producer and customer agree on the number of acceptable defects
 - a means of identifying not preventing poor quality
 - percent of defective parts versus PPM
- Sampling plan
 - provides guidelines for accepting a lot


Single–Sample Attribute Plan

Single sampling plan
N = lot size
n = sample size (random)
c = acceptance number
d = number of defective items in sample
If d ≤ c, accept lot; else reject

Producer's and Consumer's Risk

- AQL or acceptable quality level
 - proportion of defects consumer will accept in a given lot
- α or producer's risk
 - probability of rejecting a good lot
- LTPD or lot tolerance percent defective
 - limit on the number of defectives the customer will accept
 - β or consumer's risk
 - probability of accepting a bad lot

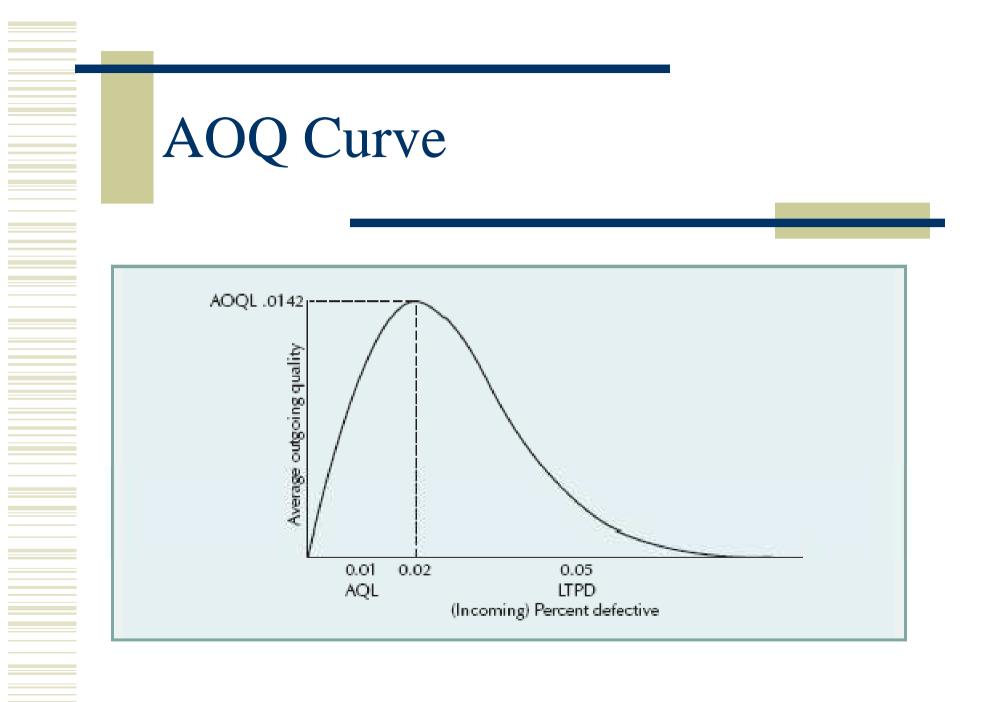

Producer's and Consumer's Risk (cont.)

Sampling Errors

Operating Characteristic (OC) Curve

- shows probability of accepting lots of different quality levels with a specific sampling plan
- assists management to discriminate between good and bad lots
- exact shape and location of the curve is defined by the sample size (n) and acceptance level (c) for the sampling plan

Supplement 3-180


Developing a Sampling Plan with OM Tools

ABC Company produces mugs in lots of 10,000. Performance measures for quality of mugs sent to stores call for a producer's risk of 0.05 with an AQL of 1% defective and a consumer's risk of 0.10 with a LTPD of 5% defective. What size sample and what acceptance number should ABC use to achieve performance measures called for in the sampling plan?

$$\begin{array}{c|c} N = 10,000 & n = ? \\ \alpha = 0.05 & c = \\ ? & \beta = 0.10 \\ AQL = 1\% & \\ LTPD = 5\% \end{array}$$

Average Outgoing Quality (AOQ)

- Expected number of defective items that will pass on to customer with a sampling plan
- Average outgoing quality limit (AOQL)
 - maximum point on the curve
 - worst level of outgoing quality

Supplement 3-183

Double-Sampling Plans

- Take small initial sample
 - If # defective ≤ lower limit, accept
 - If # defective > upper limit, reject
 - If # defective between limits, take second sample
- Accept or reject based on 2 samples
- Less costly than single-sampling plans

Multiple-Sampling Plans

- Uses smaller sample sizes
- Take initial sample
 - If # defective ≤ lower limit, accept
 - If # defective > upper limit, reject
 - If # defective between limits, resample
- Continue sampling until accept or reject lot based on all sample data

Chapter 4

Product Design

Operations Management

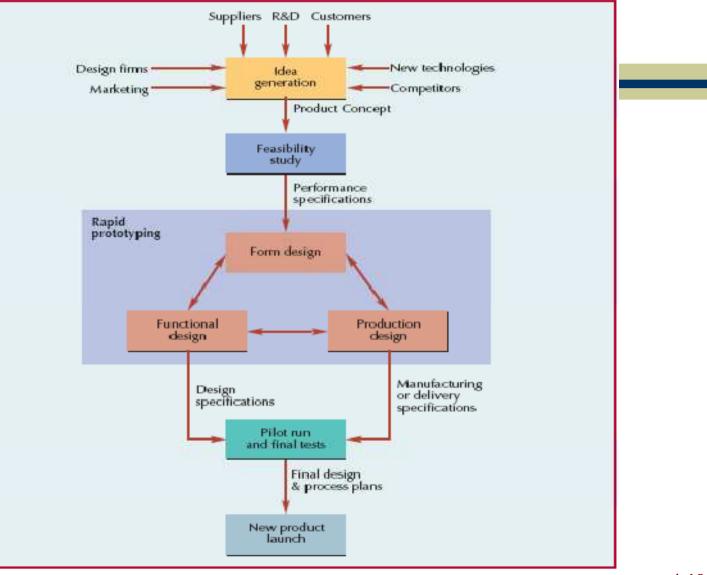
Roberta Russell & Bernard W. Taylor, III

Lecture Outline

- Design Process
- Concurrent Design
- Technology in Design
- Design Reviews

- Design for Environment
- Design for Robustness
- Quality Function Deployment

Design Process


- Effective design can provide a competitive edge
 - matches product or service characteristics with customer requirements
 - ensures that customer requirements are met in the simplest and least costly manner
 - reduces time required to design a new product or service
 - minimizes revisions necessary to make a design workable

Copyright 2009 John Wiley & Sons, Inc.

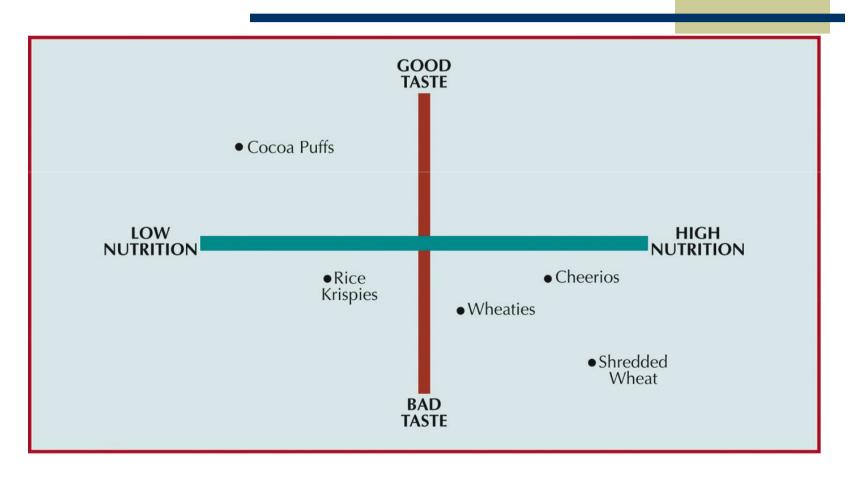
Design Process (cont.)

- Product design
 - defines appearance of product
 - sets standards for performance
 - specifies which materials are to be used
 - determines dimensions and tolerances

Design Process (cont.)

4-190

Idea Generation


- Company's own R&D department
- Customer complaints or suggestions
- Marketing research
- Suppliers

- Salespersons in the field
- Factory workers
- New technological developments
- Competitors

Idea Generation (cont.)

- Perceptual Maps
 - Visual comparison of customer perceptions
- Benchmarking
 - Comparing product/process against best-in-class
- Reverse engineering
 - Dismantling competitor's product to improve your own product

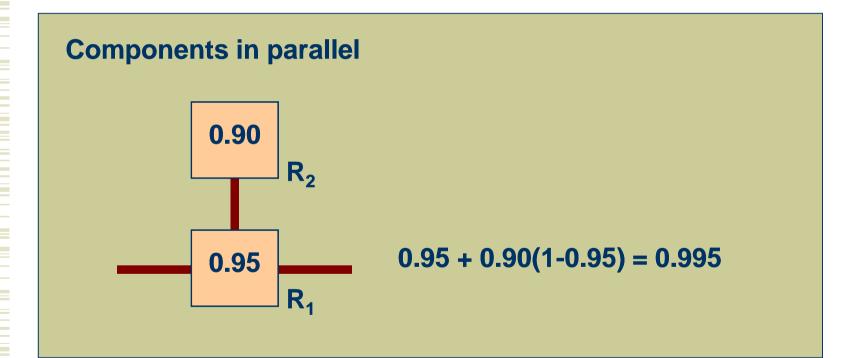
Perceptual Map of Breakfast Cereals

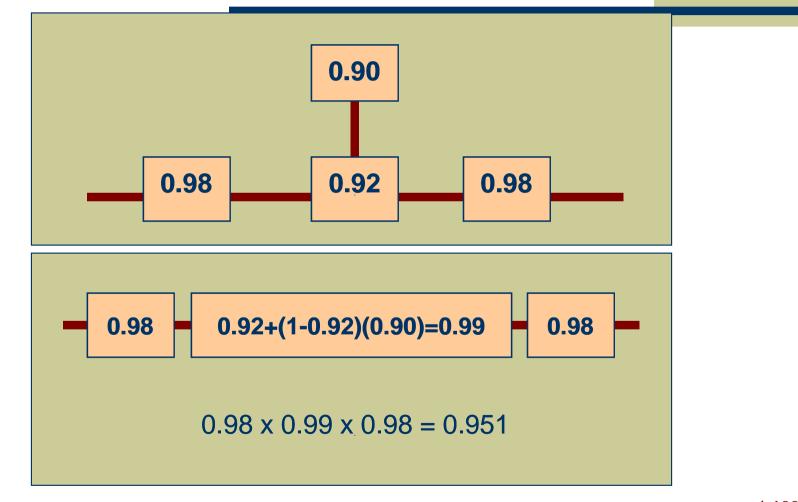
Feasibility Study

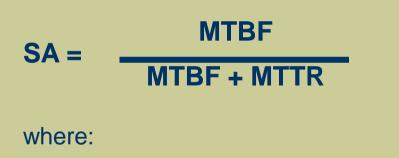
- Market analysis
- Economic analysis
- Technical/strategic analyses
- Performance specifications


Rapid Prototyping

- testing and revising a preliminary design model
- Build a prototype
 - form design
 - functional design
 - production design
- Test prototype
- Revise design
- Retest


Form and Functional Design


- Form Design
 - how product will look?
- Functional Design
 - how product will perform?
 - reliability
 - maintainability
 - usability


Computing Reliability (cont.)

System Reliability

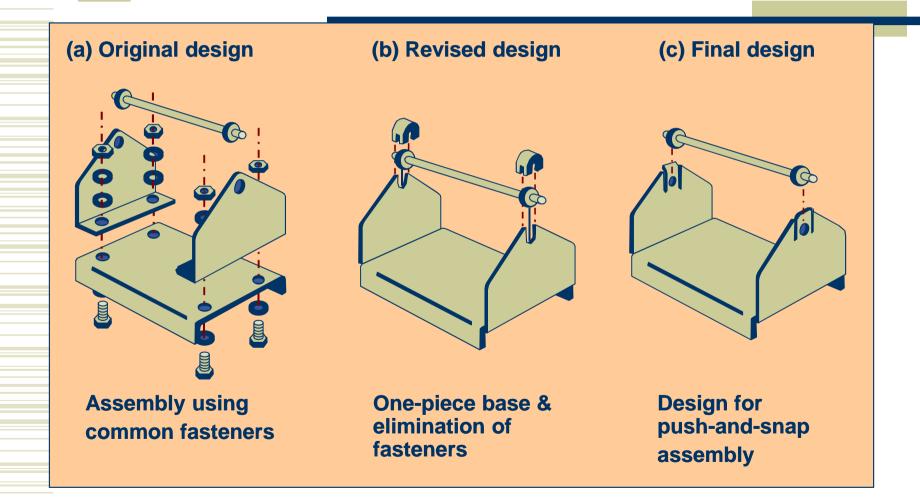
System Availability (SA)

MTBF = mean time between failures MTTR = mean time to repair

System Availability (cont.)

PROVIDER	MTBF (HR)	MTTR (HR)		
Α	60	4.0		
В	36	2.0		
С	24	1.0		
SA _A = 60 / (60 + 4) = .9375 or 94% SA _B = 36 / (36 + 2) = .9473 or 95%				
SA _c = 24 / (24 + 1) = .96 or 96%				

Usability

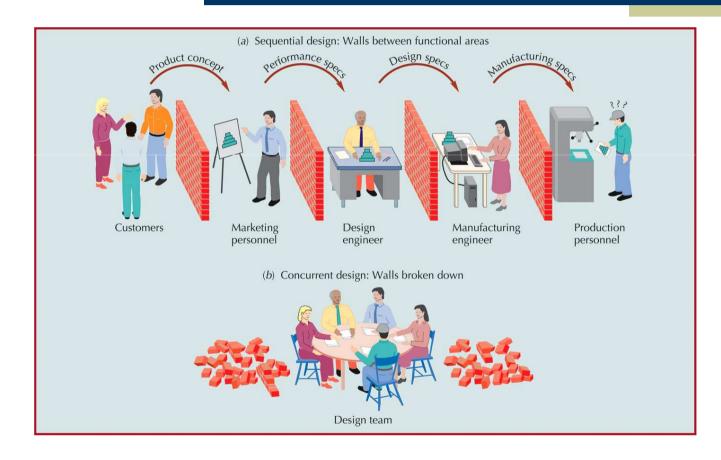

- Ease of use of a product or service
 - ease of learning
 - ease of use
 - ease of remembering how to use
 - frequency and severity of errors
 - user satisfaction with experience

Production Design

- How the product will be made
 - Simplification
 - reducing number of parts, assemblies, or options in a product
 - Standardization
 - using commonly available and interchangeable parts
 - Modular Design
 - combining standardized building blocks, or modules, to create unique finished products
 - Design for Manufacture (DFM)
 - Designing a product so that it can be produced easily and economically

Design Simplification

Source: Adapted from G. Boothroyd and P. Dewhurst, "Product Design.... Key to Successful Robotic Assembly." Assembly Engineering (September 1986), pp. 90-93.



Final Design and Process Plans

- detailed drawings and specifications for new product or service
- Process plans
 - workable instructions
 - necessary equipment and tooling
 - component sourcing recommendations
 - job descriptions and procedures
 - computer programs for automated machines

Design Team

Concurrent Design

- A new approach to design that involves simultaneous design of products and processes by design teams
- Improves quality of early design decisions

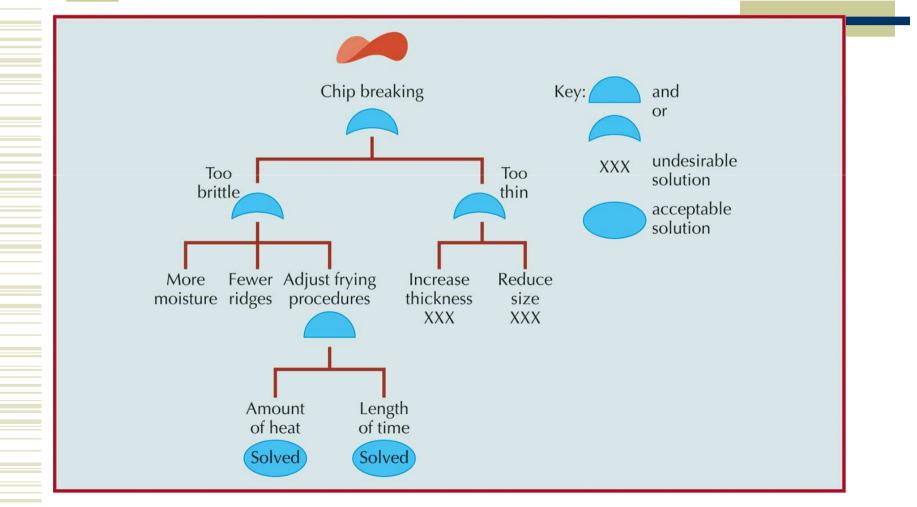
- Involves suppliers
- Incorporates production process
- Uses a price-minus system
- Scheduling and management can be complex as tasks are done in parallel
- Uses technology to aid design

Technology in Design

- Computer Aided Design (CAD)
 - assists in creation, modification, and analysis of a design
 - computer-aided engineering (CAE)
 - tests and analyzes designs on computer screen
 - computer-aided manufacturing (CAD/CAM)
 - ultimate design-to-manufacture connection
 - product life cycle management (PLM)
 - managing entire lifecycle of a product
 - collaborative product design (CPD)

Collaborative Product Design (CPD)

- A software system for collaborative design and development among trading partners
- With PML, manages product data, sets up project workspaces, and follows life cycle of the product
- Accelerates product development, helps to resolve product launch issues, and improves quality of design
- Designers can
 - conduct virtual review sessions
 - test "what if" scenarios
 - assign and track design issues
 - communicate with multiple tiers of suppliers
 - create, store, and manage project documents


Design Review

- Review designs to prevent failures and ensure value
 - Failure mode and effects analysis (FMEA)
 - a systematic method of analyzing product failures
 - Fault tree analysis (FTA)
 - a visual method for analyzing interrelationships among failures
 - Value analysis (VA)
 - helps eliminate unnecessary features and functions

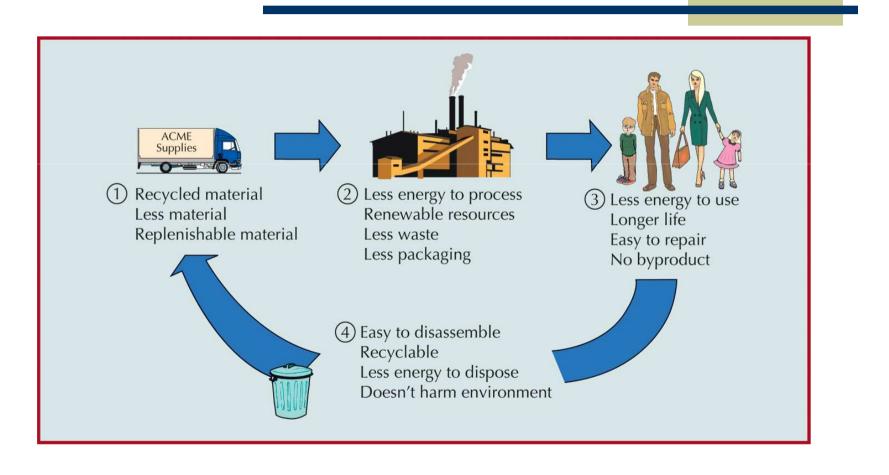
FMEA for Potato Chips

Failure Mode	Cause of Failure	Effect of Failure	Corrective Action
Stale	 low moisture content expired shelf life poor packaging 	 tastes bad won't crunch thrown out lost sales 	 add moisture cure longer better package seal shorter shelf life
Broken	 too thin too brittle rough handling rough use poor packaging 	 can't dip poor display injures mouth chocking perceived as old lost sales 	 change recipe change process change packaging
Too Salty	 outdated receipt process not in control uneven distribution of salt 	 eat less drink more health hazard lost sales 	 experiment with recipe experiment with process introduce low salt version

Fault tree analysis (FTA)

Value analysis (VA)

- Can we do without it?
- Does it do more than is required?
- Does it cost more than it is worth?
- Can something else do a better job?
- Can it be made by
 - a less costly method?
 - with less costly tooling?
 - with less costly material?
- Can it be made cheaper, better, or faster by someone else?

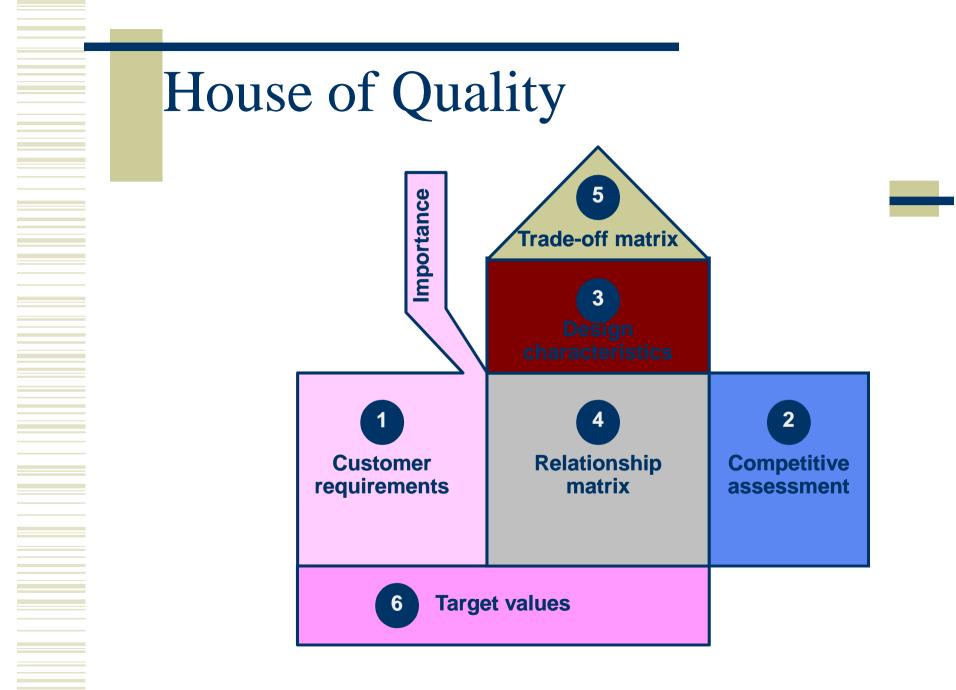

Value analysis (VA) (cont.)

- Updated versions also include:
 - Is it recyclable or biodegradable?
 - Is the process sustainable?
 - Will it use more energy than it is worth?
 - Does the item or its by-product harm the environment?

Design for Environment and Extended Producer Responsibility

- Design for environment
 - designing a product from material that can be recycled
 - design from recycled material
 - design for ease of repair
 - minimize packaging
 - minimize material and energy used during manufacture, consumption and disposal
- Extended producer responsibility
 - holds companies responsible for their product even after its useful life

Design for Environment

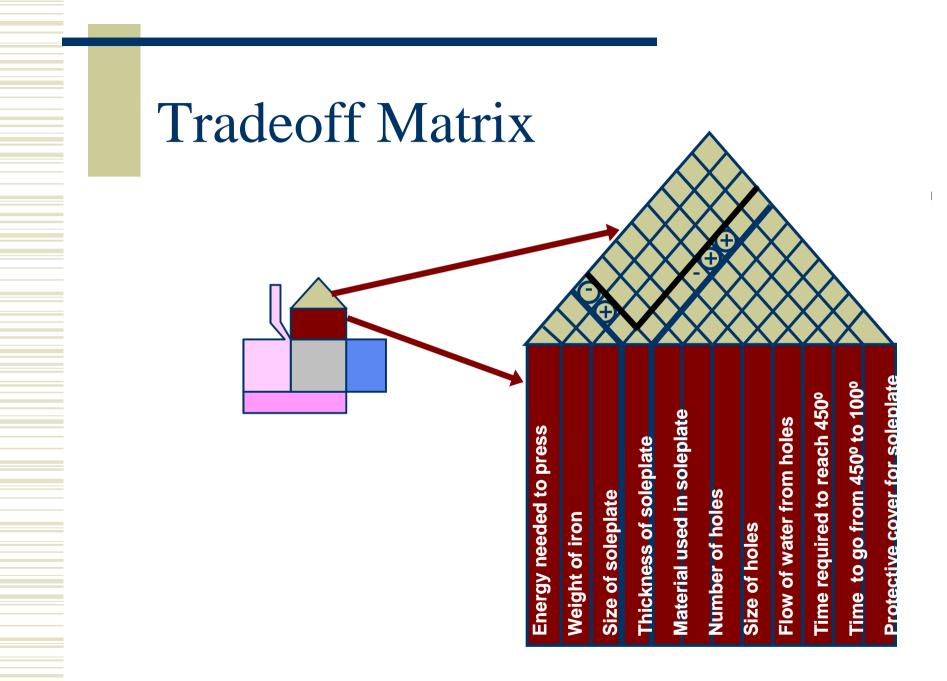


Sustainability

- Ability to meet present needs without compromising those of future generations
- Green product design
 - Use fewer materials
 - Use recycled materials or recovered components
 - Don't assume natural materials are always better
 - Don't forget energy consumption
 - Extend useful life of product
 - Involve entire supply chain
 - Change paradigm of design

Source: Adapted from the Business Social Responsibility Web site, www.bsr.org, accessed April 1, 2007. Quality Function Deployment (QFD)

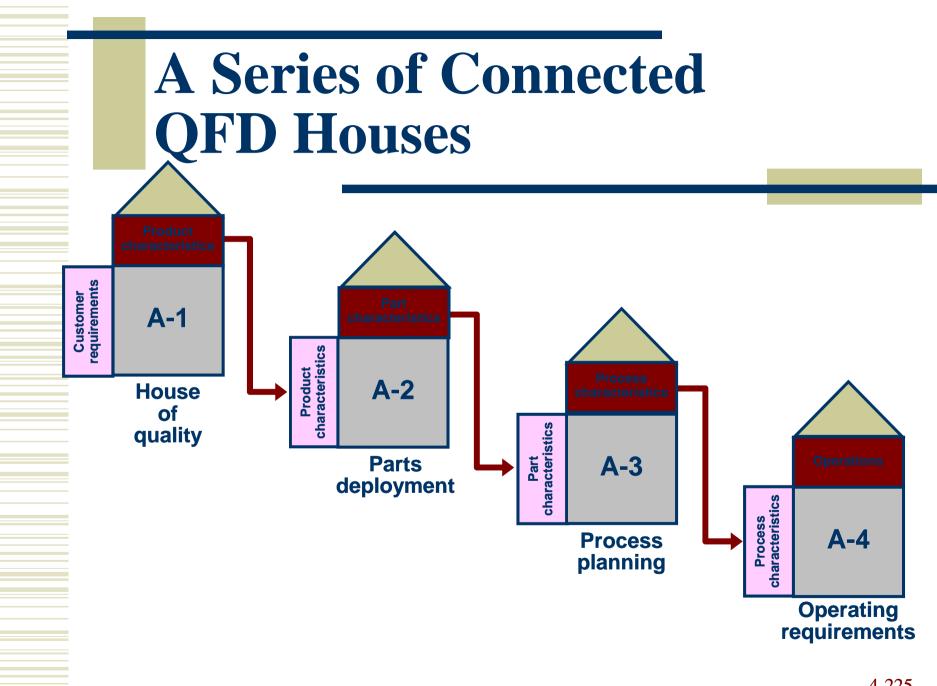
- Translates voice of customer into technical design requirements
- Displays requirements in matrix diagrams
 - first matrix called "house of quality"
 - series of connected houses



Competitive Assessment of Customer **Requirements**

	Customer Requirements		1 2	3	4	5
	Presses quickly	9	BA	У	5	
	Removes wrinkles	8	AB			
rons well	Doesn't stick to fabric	6			RA	
<u> </u>	Provides enough steam					<u>></u>
	FIOVICES enough steam			AL		Χ
	Doesn't spot fabric	6		XAB		
	Doesn't scorch fabric	9	2	A XB		
se	Heats quickly	6	Х	В	A	
asy and ife to use	Automatic shut-off	3				ABX
Eas) safe t	Quick cool-down	3	x			
S III	Deesn't break when dropped	6			<u>X</u>	
	Doesn't burn when touched	5			24	
	Not too boom	0	v		•	4-220

Competitive Assessment


From Rec to I Cha	m Cu Juiren Design aracter	stomer nents ristics Customer Requirements	Energy needed to press	Weight of iron	Size of soleplate	Thickness of soleplate	Material used in soleplate	Number of holes	Size of noies	Time required to reach 450° F	Time to go from 450° to 100°	Protective cover for soleplate
		Presses quickly Removes wrinkles	-	00	+	+ +	+	+	+	-	-	
	lrons well	Doesn't stick to fabric		-		4	2	F	ŀ		2+	
		Provides enough steam Doesn't spot fabric			+		+	+	Ò			
		Doesn't scorch fabric				+		┢	+	\overline{O}	ノ +	
	Jd Ise	Heats quickly			-	-		L		+	-	0
	asy and fe to use	Automatic shut-off				<u> </u>		╞			2	+
	Eas	Quick cool-down			-	4	+	+				
		Doesn't break when dropped		Ō		ţ	5				Ť	
		Not too heavy	+	-	-		+				4-	-221

Ta	rgeted Cha	an	ge	es	in		_						
De	rgeted Cha sign					a					50°	100°	plate
		Energy needed to press	Weight of iron	Size of soleplate	Thickness of soleplate	Matarial nead in colanlata			Size of holes	Flow of water from holes	Time required to reach 450°	Time to go from 450° to	Protective cover for soleplate
	Units of measure	ft-lb	lb	in.	cm	ty	ea	mm	oz/s	sec	sec	Y/N	Y/N
Objective measures	Iron A	3	1.4	8x4	2	SS	27	15	0.5	45	500	N	Υ
Obje mea	Iron B	4	1.2	8x4	1	MG	27	15	0.3	35	350	N	Υ
	Our Iron (X)	2	1.7	0x5	-4	Ŧ	-35-	-15-	0.7	-50	600	N	¥
Estima	nted impact	-3	4	4	4	5	4	-3	2	5	5	3	0
	ated cost	3	3	3	3	4	3	3	3	4	4	5	2
Target	S		1.2	8x5	3	SS	30			30	500		
Desigr	n changes		*	*	*	*	*			*	*	4-22	23

Completed House of Quality

	eouronauto	Energy needed to press	Weight of Iron	Size of soleplate	Thickness of soleplate	Material used in soleplate	Number of holes	Size of holes	Flow of water from holes	Time required to reach 450" F	Time to go from 450° to 100°	Protective cover for soleplate	Automatic shutoff	Competitive Assessment
	Presses quickly		0	+	+	+				•				ва Х
	Removes wrinkles		O		+	-	+	+	+			2		AB
Irons	Doesn't stick to fabric		•			\odot			+		\odot	+		H BA
_ ₹ ≥	Provides enough steam			+			+	+	٠					AB H
	Doesn't spot fabric					+	•	•	Θ					TE
	Doesn't scorch fabric				+	\odot			+		\odot			AXB
	Heats quickly			•	•					\odot				X B A
2 8	Automatic shut-off												\odot	X
an	Quick cool-down				0	+					Θ			жа в
Easy and safe to use	Doesn't break when dropped		+	+	\odot							+		
Sa m	Doesn't burn when touched				+			2			÷	\odot	+	AB
	Not too heavy	+	Θ	•	•	Θ								Х АВ
and the second	Units of measure	te-lb	ib	in.	sm.	4	e3	men	815	545	500	Y.M.	Y.W.	
Objective measures	Iron A	3	14	21	2	55	27	题	0.5	#	500	H	Y	SS = Silverstone
Non B		4	12	E14	1	MC	27	15	0.3	×	350	н	¥	MG = Mirorrglide
Our Iron (X)		2		515	4	T	35	15	0.7		600	11	Y	-
	ited impact	2	4	4	4	8	4	3	2	8	5			T = Titanium
10000	ited cost	3	3	1	3	4	3	3	3	4	4	5	2	
Target			12	815	3	22	20			30	500			
Design	i changes	-		Sec.		34				J.P.	1			1

Benefits of QFD

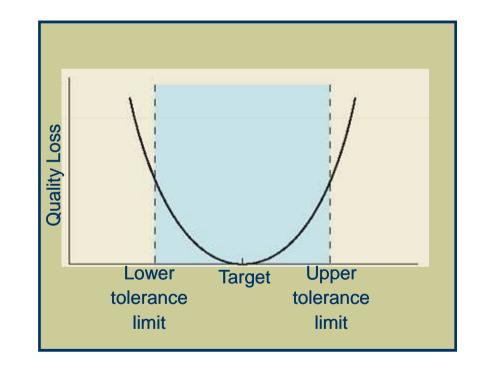
- Promotes better understanding of customer demands
- Promotes better understanding of design interactions
- Involves manufacturing in design process
- Provides documentation of design process

Design for Robustness

- Robust product
 - designed to withstand variations in environmental and operating conditions
- Robust design
 - yields a product or service designed to withstand variations
- Controllable factors
 - design parameters such as material used, dimensions, and form of processing
- Uncontrollable factors
 - user's control (length of use, maintenance, settings, etc.)

Design for Robustness (cont.)

Tolerance


 allowable ranges of variation in the dimension of a part

Consistency

- consistent errors are easier to correct than random errors
- parts within tolerances may yield assemblies that are not within limits
- consumers prefer product characteristics near their ideal values

Taguchi's Quality Loss Function

- Quantifies customer preferences toward quality
- Emphasizes that customer preferences are strongly oriented toward consistently
- Design for Six Sigma (DFSS)

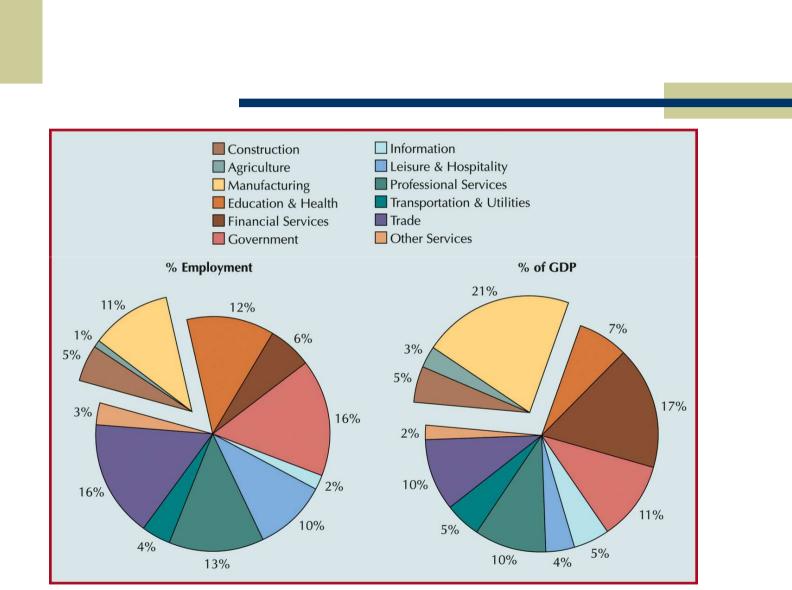
Copyright 2009 John Wiley & Sons, Inc. All rights reserved. Reproduction or translation of this work beyond that permitted in section 117 of the 1976 United States Copyright Act without express permission of the copyright owner is unlawful. Request for further information should be addressed to the Permission Department, John Wiley & Sons, Inc. The purchaser may make back-up copies for his/her own use only and not for distribution or resale. The Publisher assumes no responsibility for errors, omissions, or damages caused by the use of these programs or from the use of the information herein.

Chapter 5

Service Design

Operations Management

Roberta Russell & Bernard W. Taylor, III

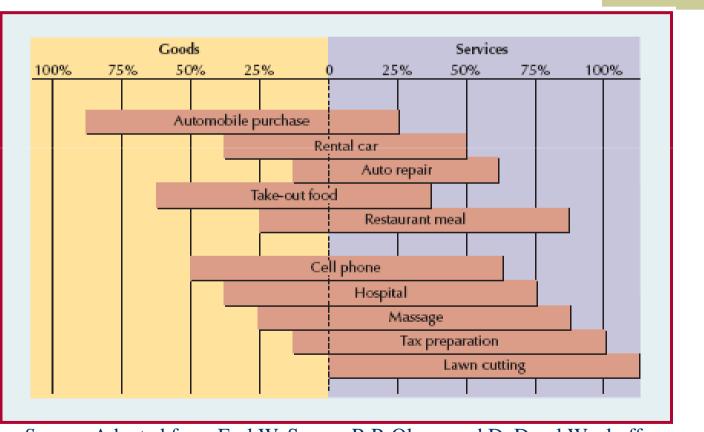

Lecture Outline

- Service Economy
- Characteristics of Services
- Service Design Process
- Tools for Service Design
- Waiting Line Analysis for Service Improvement

Service Economy

Nation	% World Labor	% Agriculture	% Goods	% Services	2006
hina	21.0	50	15	35	
ndia	17.0	60	17	23	50 – (A) Agriculture:
U.S.	4.8	3	27	70	60 - (G) Goods: 40 -
Indonesia	3.9	45	16	39	40 - (S) Services:
Brazil	3.0	23	24	53	
Russia	2.5	12	23	65	1800 1850 1900 1950 2000
Japan	2.4	5	25	70	
Nigeria	2.2	70	10	20	
Bangledesh	2.2	63	11	26	
Germany	1.4	3	33	64	

Source: U.S. Bureau of Labor Statistics, IBM Almaden Research Center

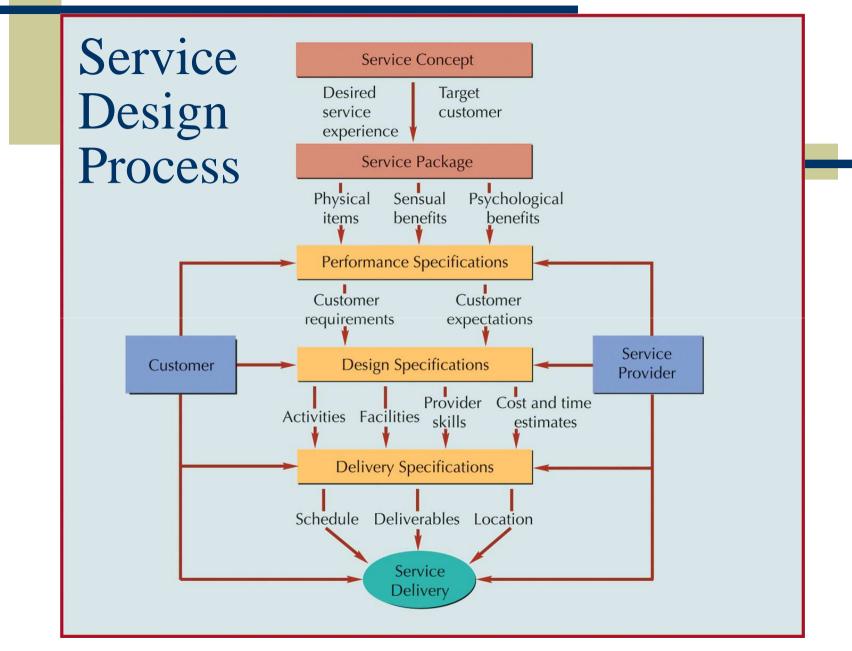


5-234

Characteristics of Services

- Services
 - acts, deeds, or performances
- Goods
 - tangible objects
- Facilitating services
 - accompany almost all purchases of goods
- Facilitating goods
 - accompany almost all service purchases

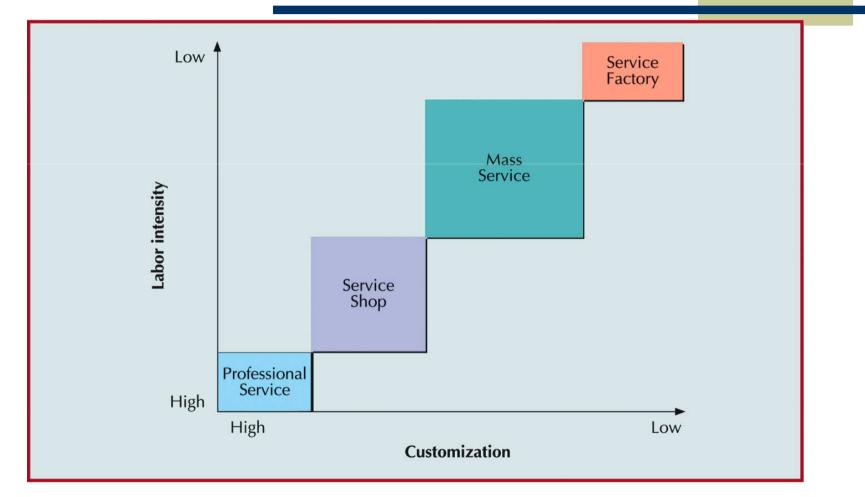
Continuum from Goods to Services



Source: Adapted from Earl W. Sasser, R.P. Olsen, and D. Daryl Wyckoff, Management of Service Operations (Boston: Allyn Bacon, 1978), p.11.

Characteristics of Services (cont.)

- Services are intangible
- Service output is variable
- Services have higher customer contact
- Services are perishable


- Service inseparable from delivery
- Services tend to be decentralized and dispersed
- Services are consumed more often than products
- Services can be easily emulated

Service Design Process (cont.)

- Service concept
 - purpose of a service; it defines target market and customer experience
- Service package
 - mixture of physical items, sensual benefits, and psychological benefits
- Service specifications
 - performance specifications
 - design specifications
 - delivery specifications

Service Process Matrix

High v. Low Contact Services

Design Decision	High-Contact Service	Low-Contact Service
 Facility location 	 Convenient to customer 	Near labor or transportation source
Facility layout	Must look presentable, accommodate customer needs, and facilitate interaction with customer	Designed for efficiency

High v. Low Contact Services (cont.)							
Design Decision	High-Contact Service	Low-Contact Service					
 Quality control 	 More variable since customer is involved in process; customer expectations and perceptions of quality may differ; customer present when defects occur 	Measured against established standards; testing and rework possible to correct defects					
Capacity	Excess capacity required to handle peaks in demand	Planned for average demand					

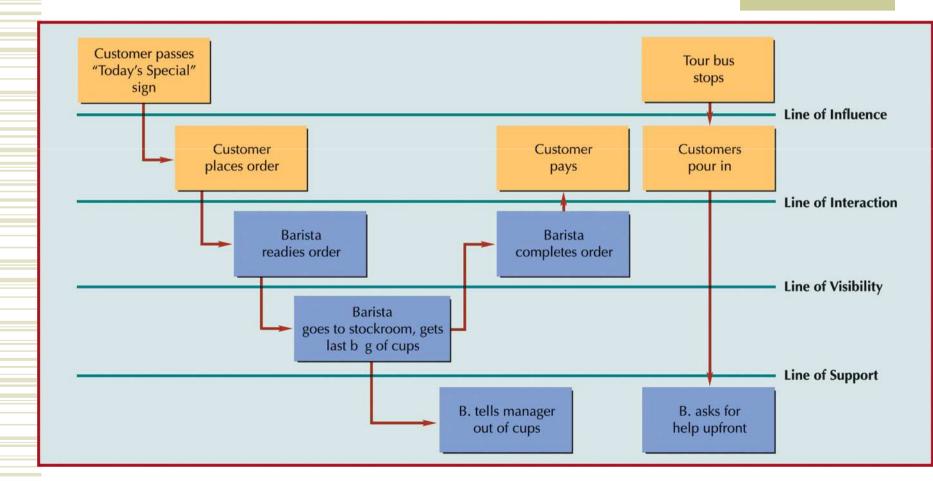
High v. Low Contact Services (cont.)							
Design Decision	High-Contact Service	Low-Contact Service					
Worker skills	 Must be able to interact well with customers and use judgment in decision making 	Technical skills					
Scheduling	Must accommodate customer schedule	Customer concerned only with completion date					

High v. Low Contact Services (cont.)

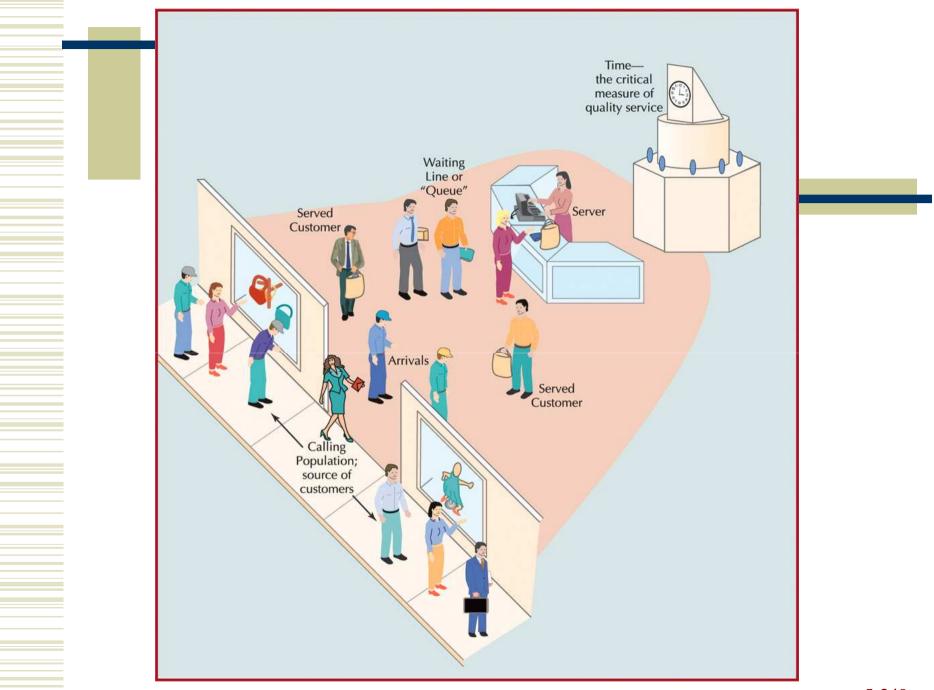
Design Decision	High-Contact Service	Low-Contact Service
Service process	 Mostly front-room activities; service may change during delivery in response to customer 	Mostly back-room activities; planned and executed with minimal interference
Service package	Varies with customer; includes environment as well as actual service	Fixed, less extensive

Tools for Service Design

- Service blueprinting
 - line of influence
 - line of interaction
 - line of visibility
 - line of support
- Front-office/Backoffice activities


- Servicescapes
 - space and function
 - ambient conditions
 - signs, symbols, and artifacts
- Quantitative techniques

Service Blueprinting


Service Blueprinting (Con't)

Elements of Waiting Line Analysis

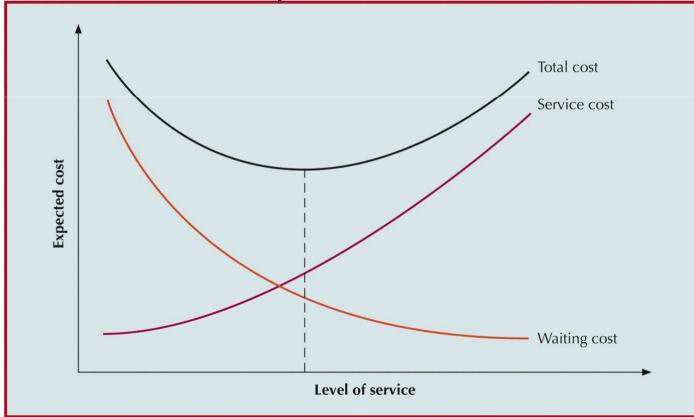
- Operating characteristics
 - average values for characteristics that describe performance of waiting line system
- Queue
 - a single waiting line
- Waiting line system
 - consists of arrivals, servers, and waiting line structure
- Calling population
 - source of customers; infinite or finite

Elements of Waiting Line Analysis (cont.)

- Arrival rate (λ)
 - frequency at which customers arrive at a waiting line according to a probability distribution, usually Poisson
- Service time (µ)
 - time required to serve a customer, usually described by negative exponential distribution
- Service rate must be shorter than arrival rate ($\lambda < \mu$)
- Queue discipline
 - order in which customers are served
- Infinite queue
 - can be of any length; length of a finite queue is limited

Elements of Waiting Line Analysis (cont.)

- Channels
 - number of parallel servers for servicing customers
- Phases
 - number of servers in sequence a customer must go through


Operating Characteristics

 Operating characteristics are assumed to approach a steady state

Notation	Operating Characteristic
L	Average number of customers in the system (waiting and being served)
L _q	Average number of customers in the waiting line
W	Average time a customer spends in the system (waiting and being served)
W_q	Average time a customer spends waiting in line
Po	Probability of no (i.e., zero) customers in the system
P _n	Probability of <i>n</i> customers in the system
ρ	Utilization rate; the proportion of time the system is in use

Traditional Cost Relationships

• as service improves, cost increases

5-253

Psychology of Waiting

- Waiting rooms
 - magazines and newspapers
 - televisions
- Bank of America
 - mirrors
- Supermarkets
 - magazines
 - "impulse purchases"

- Disney
 - costumed characters
 - mobile vendors
 - accurate wait times
 - special passes

5-254

Psychology of Waiting (cont.)

- Preferential treatment
 - Grocery stores: express lanes for customers with few purchases
 - Airlines/Car rental agencies: special cards available to frequent-users or for an additional fee
 - Phone retailers: route calls to more or less experienced salespeople based on customer's sales history
- Critical service providers
 - services of police department, fire department, etc.
 - waiting is unacceptable; cost is not important

Waiting Line Models

- Single-server model
 - simplest, most basic waiting line structure
- Frequent variations (all with Poisson arrival rate)
 - exponential service times
 - general (unknown) distribution of service times
 - constant service times
 - exponential service times with finite queue
 - exponential service times with finite calling population

Basic Single-Server Model

- Assumptions
 - Poisson arrival rate
 - exponential service times
 - first-come, firstserved queue discipline
 - infinite queue length
 - infinite calling population

- Computations
 - λ = mean arrival rate
 - µ = mean service rate
 - n = number of customers in line

Basic Single-Server Model (cont.)

 probability that no customers are in queuing system

 $P_0 = \begin{pmatrix} \lambda \\ 1 \\ \mu \end{pmatrix}$

 average number of customers in queuing system

- probability of *n* customers in queuing system $P_n = \left(-\frac{\lambda}{2} \right)^n \cdot P_0 = \left(-\frac{\lambda}{\mu} \right) \left(1 - \frac{\lambda}{\mu} \right)$ $L_q = L_q = \frac{\lambda}{\mu} \left(1 - \frac{\lambda}{\mu} \right)$
- average number of customers in waiting line

$$L_q = \frac{\lambda^2}{\mu (\mu - \lambda)}$$

Basic Single-Server Model (cont.)

 average time customer spends in queuing system

$$W = \frac{1}{\mu - \lambda} = \frac{L}{\lambda}$$

average time customer spends waiting in line
 λ

 probability that server is busy and a customer has to wait (utilization factor)

$$\rho = \frac{\lambda}{\mu}$$

 probability that server is idle and customer can be served

$$I = 1 - \rho$$
$$= 1 - \frac{\lambda}{\mu} = P_0$$

Basic Single-Server Model Example

$$P_0 = \left(1 - \frac{\lambda}{\mu}\right) = \left(1 - \frac{24}{30}\right)$$

= 0.20 probability of no customers in the system

$$L = \frac{\lambda}{\mu - \lambda} = \frac{24}{30 - 24}$$

= 4 customers on the average in the queuing system $L_q = \frac{\lambda^2}{\mu(\mu - \lambda)} = \frac{(24)^2}{30(30 - 24)}$ = 3.2 customers on the average in the waiting line

$$W = \frac{1}{\mu - \lambda} = \frac{1}{30 - 24}$$

= 0.167 hour (10 minutes) average time in the system per customer

$$W_q = \frac{\lambda}{\mu(\mu - \lambda)} = \frac{24}{30(30 - 24)}$$

= 0.133 hour (8 minutes) average time in the waiting line per customer

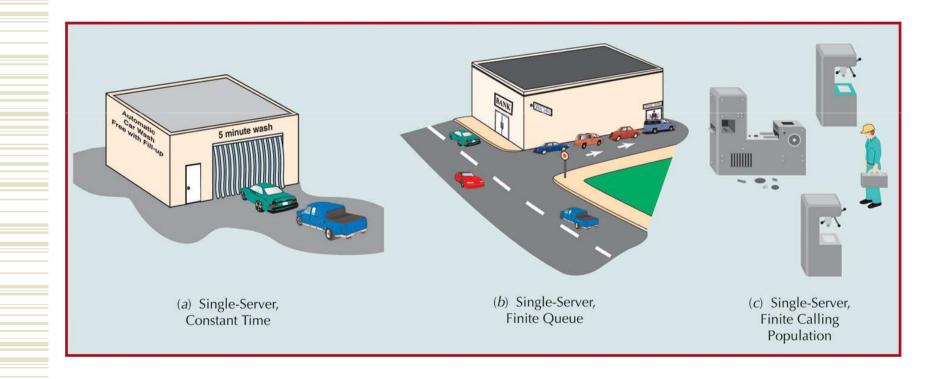
$$\rho = \frac{\lambda}{\mu} = \frac{24}{30}$$

= 0.80 probability that the server will be busy and the customer must wait $I~=1-~\rho~=1-~0.80$

= 0.20 probability that the server will be idle and a customer can be served

Service Improvement Analysis

- waiting time (8 min.) is too long
 - hire assistant for cashier?
 - increased service rate
 - hire another cashier?
 - reduced arrival rate
- Is improved service worth the cost?


Basic Single-Server Model Example: Excel

3)	<u>File</u> Edit	View Ins	ert F <u>o</u> rmat <u>T</u> ool	s <u>D</u> ata	Window H	
	-					
		3 3 4 8		δΣ.	1 🛄 🕜	
	D9	-	<i>f</i> =D4^2/(D5*(D	5-D4)) 🔪		
	A	В	С	D	E	
1	A Si	ngle-Ser	ver Model			
2			Example 5.1			\sim
3		Input:				Formula for Lq
4			Arrival rate =	24	per hour	,
5			Service rate =	30	per hour	
6					/	
7		Output:				
8			the system (L) =			=(1/(D4-D3))*60
9			the queue (Lq) =	· · · · · · · · · · · · · · · · · · ·		
10			ne system (W) =		minutes	
11	Avera		he queue $(Wq) =$		minutes	
12		Utiliz	ation factor $(U) =$		=(D3/(D4*(D4–D3)))*60
13			P(0) =	0.200		
14				-		
15		No. in	the system, n =	5		
16			P(n) =	0.066		

Advanced Single-Server Models

- Constant service times
 - occur most often when automated equipment or machinery performs service
- Finite queue lengths
 - occur when there is a physical limitation to length of waiting line
- Finite calling population
 - number of "customers" that can arrive is limited

Advanced Single-Server Models (cont.)

Basic Multiple-Server Model

- single waiting line and service facility with several independent servers in parallel
- same assumptions as single-server model
- $s\mu > \lambda$
 - s = number of servers
 - servers must be able to serve customers faster than they arrive

• probability that there are no customers in system $P_0 = \frac{1}{\left[n = s - 1\right]} \left[\frac{\lambda}{1} \frac{\lambda}{1} \frac{n}{1} \frac{\lambda}{1} \frac{\lambda$

$$\begin{bmatrix} n = 0 \\ n = 0 \end{bmatrix} \begin{bmatrix} n \\ -n \end{bmatrix} \begin{bmatrix}$$

• probability of *n* customers in system $P_{n} = \begin{cases} \frac{1}{s! s} \begin{pmatrix} \lambda & n \\ -s \end{pmatrix} \mu^{n} P_{0}, & \text{for } n > s \\ -\begin{pmatrix} - \end{pmatrix} & \frac{1}{P_{0}}, & \frac{\lambda & n}{\mu} \\ \mu & \text{for } n \le s \end{cases}$

probability that customer must wait

$$P_{w} = \frac{1}{s!} \left(\frac{\lambda}{\mu} \right)^{s} \frac{s \mu}{s\mu - \lambda} P_{0}$$

$$L_q = L - \frac{\Lambda}{\mu}$$

$$\frac{\lambda \mu (\lambda/\mu)^s}{(s-1)! (s\mu - \lambda)^2} P_0 + \frac{\lambda}{\mu}$$

$$W_q = \mu L - \frac{1}{\mu} = \frac{L_q}{\lambda}$$

$$\frac{\lambda}{s\mu}\rho =$$

Basic Multiple-Server Model Example

- $\lambda = 10$ students per hour
- $\mu = 4$ students per hour per service representative
- s = 3 service representatives

 $s\mu = (3)(4) = 12 \ (> \lambda = 10)$

$$\begin{split} P_{0} &= \frac{1}{\left[\sum_{n=0}^{n-s-1} \frac{1}{n!} \left(\frac{\lambda}{\mu}\right)^{n}\right]} + \frac{1}{s!} \left(\frac{\lambda}{\mu}\right)^{s} \left(\frac{s\mu}{s\mu - \lambda}\right)}{1} \\ &= \frac{1}{\left[\frac{0}{0!} \left(\frac{10}{4}\right)^{0} + \frac{1}{1!} \left(\frac{10}{4}\right)^{1} + \frac{1}{2!} \left(\frac{10}{4}\right)^{2}\right]} + \frac{1}{3!} \left(\frac{10}{4}\right)^{3} \frac{3(4)}{3(4) - 10}} \end{split}$$

= 0.045 probability that no customers are in the health service.

$$L = \frac{\lambda \mu (\lambda/\mu)^{s}}{(s-1)!(s\mu - \lambda)^{2}} P_{0} + \frac{\lambda}{\mu}$$

= $\frac{(10)(4)(10/4)^{3}}{(3-1)!(3(4) - 10)^{2}}(0.045) + \frac{10}{4}$
= 6 students in the health service
$$W = \frac{L}{\lambda}$$

= $\frac{6}{10}$
= 0.60 hour or 36 minutes in the health service

 $L_{e} = L - \frac{\lambda}{\mu}$ = $6 - \frac{10}{4}$ = 3.5 students waiting to be served $W_{q} = \frac{L_{q}}{\lambda}$ = $\frac{3.5}{10}$ = 0.35 hour or 21 minutes waiting in line

$$P_{w} = \frac{1}{s!} \left(\frac{\lambda}{\mu}\right)^{s} \frac{s\mu}{s\mu - \lambda} P_{0}$$
$$= \frac{1}{3!} \left(\frac{10}{4}\right)^{3} \frac{3(4)}{3(4) - (10)} (0.045)$$

= 0.703 probability that a student must wait for service (i.e., that there are three or more students in the system)

- To cut wait time, add another service representative
 - now, *s* = 4

Therefore:

- $P_0 = 0.073$ probability that no students are in the health service
- L = 3.0 students in the health service
- W = 0.30 hour, or 18 minutes, in the health service
- $L_g = 0.5$ students waiting to be served
- $W_a = 0.05$ hour, or 3 minutes, waiting in line
- $P_w = 0.31$ probability that a student must wait for service

Multiple-Server Waiting Line

		4 E 1 E									
n fxce	Micros	soft Excel - Ex	hibit 5 3								
	Ele	Microsoft Excel - Exhibit 5 3									
	:				110	N	//h @	Pt : Arial		- 10	
	D9									5))-(D4)))	
	A		С	D	E	F	G	H	I.	J	K
	1 A M	ultiple-Serve	er Waiting Line	e Syster	n						
	2										5
	3	Input:				(Input the	arrival				
	4		Arrival rate =	10	per hour	Input the arrival rate, service rate, and					
	5		Service rate =	4	per hour						
	6	1	lo. of servers, s =	3		numt	er of				
	7				-	serv	ers.				6.
	8	Output:		0.045		-		\$			
	9		Pa= Pw=	0.045	}						
	10 11 Ave	race number in	the system (L) =	6.01		1					
			the queue (Lq) =	3.51							63
			the system (W) =		minutes						E.
			the queue (Wa) =		minutes						
	15	Ī									
	16										
	17	Multiple-Server	Model				n	Summation			
	18						1	1.0000			5
	19	$P_0 =$	$\frac{1}{\left[\sum_{a=0}^{n-s-1}\frac{1}{n!}\left(\frac{\lambda}{\mu}\right)^{a}\right]} +$	1.24	Ň		2	3.5000			
	20		$\left \sum_{n=j-1}^{n=j-1} \frac{1}{\lambda} \left(\frac{\lambda}{\lambda} \right)^n \right +$	$\frac{1}{\lambda} \frac{\lambda}{\lambda}$	sµ)		3	6.6250			
	21		$\begin{bmatrix} 2 \\ a = 0 \end{bmatrix} n! \langle \mu \rangle$	si /m//3	$s\mu - \lambda /$		4	9.2292			
	22						5	10.8568			
	23 24	()	() 14				6	11.6706 12.0097			
	25	1	$\frac{1}{\pi} \left(\frac{\lambda}{\mu}\right)^n P_0, \text{for } n \ge \frac{1}{\pi} \left(\frac{\lambda}{\mu}\right)^n P_0, for $	2 <			8	12.1308			8
	26	$P_n = \begin{cases} \frac{313}{1} \\ 1 \end{cases}$	1.				9	12.1686			
	27	$\frac{1}{n!}$	$\left(\frac{1}{L}\right)P_0$, for $n =$	$\leq s$			10	12.1791			
	28	• •	·				11	12.1817			-
	29	$P_{w} = \frac{1}{s!} \left(\frac{\lambda}{\mu} \right)$	$\frac{s_{\mu}}{2} P_{\mu}$				12	12.1823			
	30	·* 3! (H	$/ s\mu - \lambda^{-0}$				13	12.1825			
	31	λ λι	$\frac{\mu(\lambda/\mu)^{s}}{(s\mu - \lambda)^{2}}P_{0} + \frac{1}{2}$	λ			14	12.1825			
	32	$L = \frac{1}{(s-1)}$	$(s\mu - \lambda)^2 P_0 + \frac{1}{2}$	μ			15	12.1825			-
	33	L					16	12.1825			
	34	$W = \frac{L}{\lambda}$					17	12.1825			
	35 36						18 19	12.1825 12.1825			
	30	$L_q = L - \frac{\lambda}{\mu}$	6				20	12.1825			
	51						20	12.1025			

Chapter 6

Processes and Technology

Operations Management

Roberta Russell & Bernard W. Taylor, III

Lecture Outline

- Process Planning
- Process Analysis
- Process Innovation
- Technology Decisions

Process Planning

- Process
 - a group of related tasks with specific inputs and outputs
- Process design
 - what tasks need to be done and how they are coordinated among functions, people, and organizations
- Process strategy
 - an organization's overall approach for physically producing goods and services
- Process planning
 - converts designs into workable instructions for manufacture or delivery

Process Strategy

- Vertical integration
 - extent to which firm will produce inputs and control outputs of each stage of production process
- Capital intensity
 - mix of capital (i.e., equipment, automation) and labor resources used in production process
- Process flexibility
 - ease with which resources can be adjusted in response to changes in demand, technology, products or services, and resource availability
- Customer involvement
 - role of customer in production process

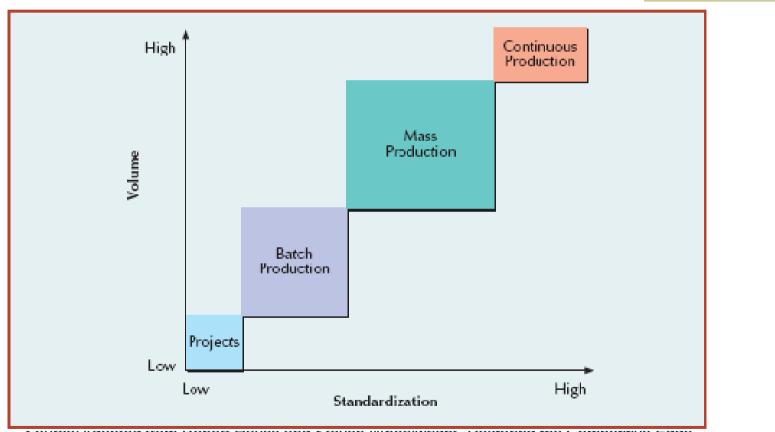
Outsourcing

CostCapacity

Quality

- Speed
- Reliability
- Expertise

Process Selection


- Projects
 - one-of-a-kind production of a product to customer order
- Batch production
 - processes many different jobs at the same time in groups or batches
- Mass production
 - produces large volumes of a standard product for a mass market
- Continuous production
 - used for very-high volume commodity products

Sourcing Continuum

Product-Process Matrix

Source: Adapted from Robert Hayes and Steven wheelwright, Restoring the Competitive Edge Competing through Manufacturing (New York, John Wiley & Sons, 1984), p. 209.

Types of Pro	cesses
--------------	--------

	PROJECT	BATCH	MASS	CONT.				
Type of product	Unique	Made-to- order (customized)	Made-to- stock (standardized)	Commodity				
Type of customer	One-at-a- time	Few individual customers	Mass market	Mass market				
Product demand	Infrequent	Fluctuates	Stable	Very stable				
Source: Adapted from R. Chase, N. Aquilano, and R. Jacobs, <i>Operations Management for Competitive Advantage</i> (New York:McGraw-Hill, 2001), p. 210								

Types of Processes (cont.)

T	Types of Processes (cont.)							
	PROJECT	BATCH	MASS	CONT.				
Demand volume	Very low	Low to medium	High	Very high				
No. of different products	Infinite variety	Many, varied	Few	Very few				
Production system	Long-term project	Discrete, job shops	Repetitive, assembly lines	Continuous, process industries				
	Source: Adapted from R. Chase, N. Aquilano, and R. Jacobs, <i>Operations Management for Competitive Advantage</i> (New York:McGraw-Hill, 2001), p. 210							

Types of Processes (cont.)

Ty	Types of Processes (cont.)							
	PROJECT	BATCH	MASS	CONT.				
Equipment	Varied	General- purpose	Special- purpose	Highly automated				
Primary type of work	Specialized contracts	Fabrication	Assembly	Mixing, treating, refining				
Worker skills	Experts, crafts- persons	Wide range of skills	Limited range of skills	Equipment monitors				
Source: Adapted from R. Chase, N. Aquilano, and R. Jacobs, Operations Management for Competitive Advantage (New York:McGraw-Hill, 2001), p. 210								

Types of Processes (cont.)

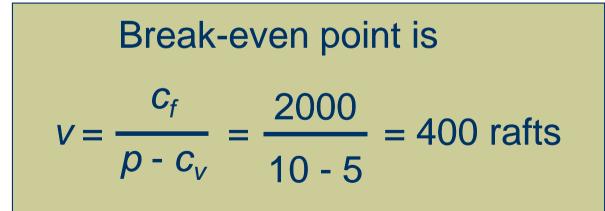
	PROJECT	BATCH	MASS	CONT.
Advantages	Custom work, latest technology	Flexibility, quality	Efficiency, speed, low cost	Highly efficient, large capacity, ease of control
Dis- advantages	Non-repetitive, small customer base, expensive	Costly, slow, difficult to manage	Capital investment; lack of responsiveness	Difficult to change, far-reaching errors, limited variety
Examples	Construction, shipbuilding, spacecraft	Machine shops, print shops, bakeries, education	Automobiles, televisions, computers, fast food	Paint, chemicals, foodstuffs

Source: Adapted from R. Chase, N. Aquilano, and R. Jacobs, *Operations Management for Competitive Advantage* (New York:McGraw-Hill, 2001), p. 210

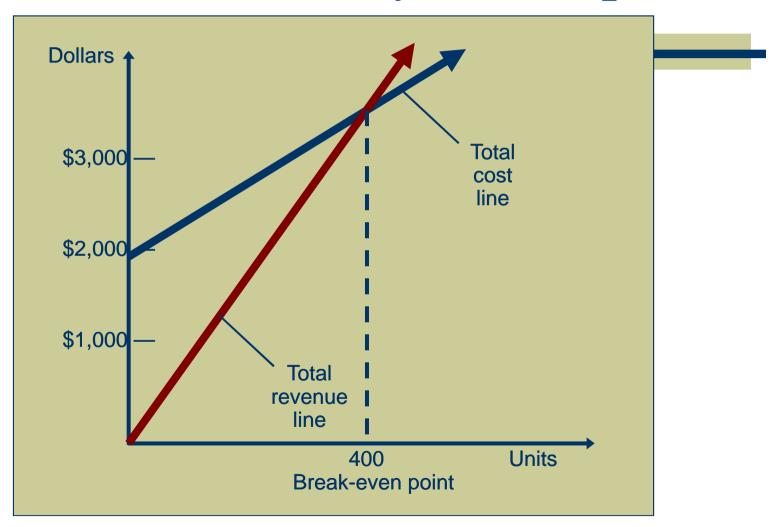
Process Selection with Break-Even Analysis

- examines cost trade-offs associated with demand volume
 Cost
 - Fixed costs
 - constant regardless of the number of units produced
 - Variable costs
 - vary with the volume of units produced
- Revenue
 - price at which an item is sold
- Total revenue
 - is price times volume sold
- Profit
 - difference between total revenue and total cost

Process Selection with Break-Even Analysis (cont.)


Total cost = fixed cost + total variable cost $TC = c_f + vc_v$ Total revenue = volume x price TR = vpProfit = total revenue - total cost $Z = TR - TC = vp - (c_f + vc_v)$

Process Selection with Break-Even Analysis (cont.)

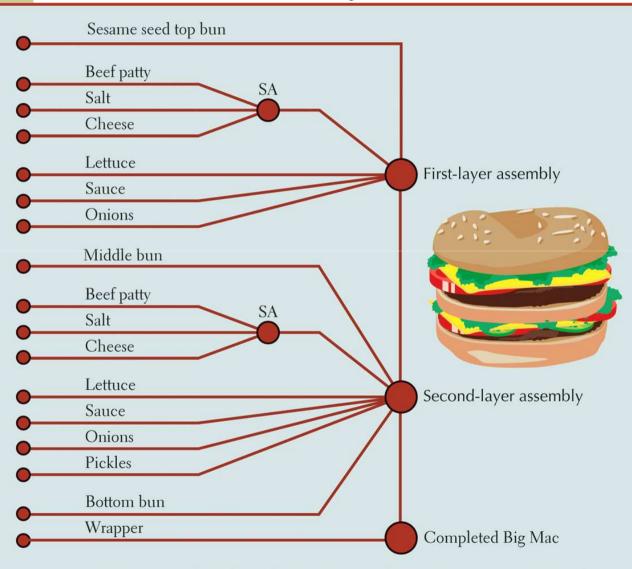

TR = TC $vp = c_f + vc_v$ $vp - vc_v = c_f$ $v(p - c_v) = c_f$ c_f $V = \overline{p - c_v}$ Solving for Break-Even Point (Volume)

Break-Even Analysis: Example

Fixed cost = $c_f = $2,000$ Variable cost = $c_v = 5 per raft Price = p = \$10 per raft

Break-Even Analysis: Graph

Process Plans


- Set of documents that detail manufacturing and service delivery specifications
 - assembly charts
 - operations sheets
 - quality-control check-sheets

Process Selection

Process A Process B \$2,000 + \$5v = \$10,000 + \$3v \$2v = \$8,000v = 4,000 rafts

Below or equal to 4,000, choose A Above or equal to 4,000, choose B

Process Analysis

• systematic examinatio n of all aspects of process to improve operation

An Operations Sheet for a Plastic Part

An Operations Sheet for a Plastic Part												
Part n Part N Usage Asser	No. <u>52074</u>	_										
Oper. No.	Description	Dept.	Machine/Tools	Time								
10	Pour in plastic bits	041	Injection molding	2 min								
20	Insert mold	041	#076	2 min								
30	Check settings & start machine	041	113, 67, 650	20 min								
40	Collect parts & lay flat	051	Plastics finishing	10 min								
50	Remove & elean mold	042	Parts washer	15 min								
60	Break off rough edges	051	Plastics finishing	10 min								

Process Analysis

- Building a flowchart
 - Determine objectives
 - Define process boundaries
 - Define units of flow
 - Choose type of chart
 - Observe process and collect data
 - Map out process
 - Validate chart

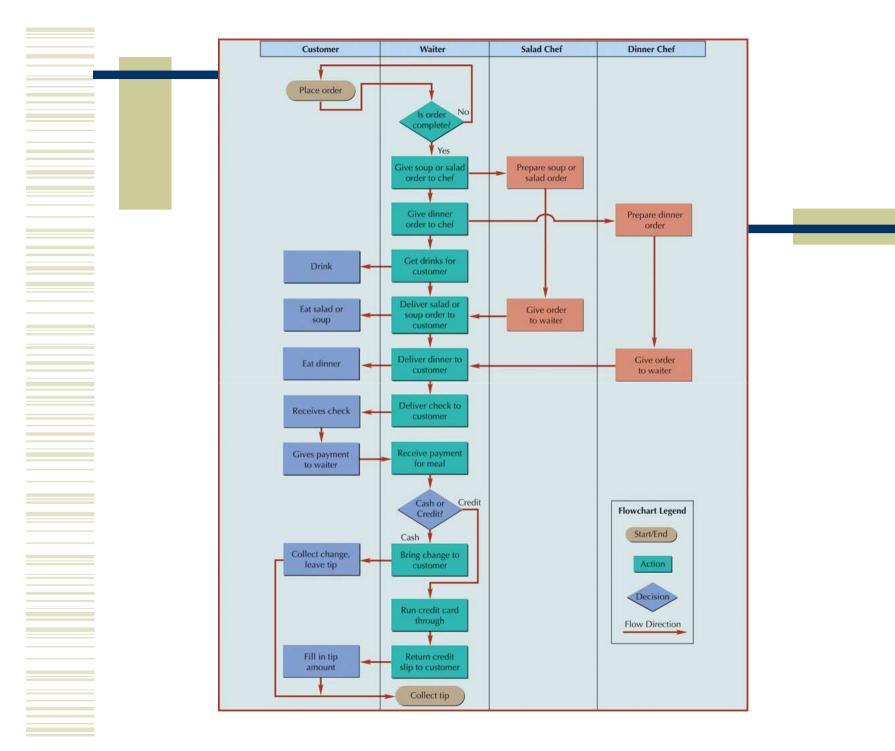
Process Flowcharts

- look at manufacture of product or delivery of service from broad perspective
- Incorporate
 - nonproductive activities (inspection, transportation, delay, storage)
 - productive activities (operations)

Process Flowchart Symbols

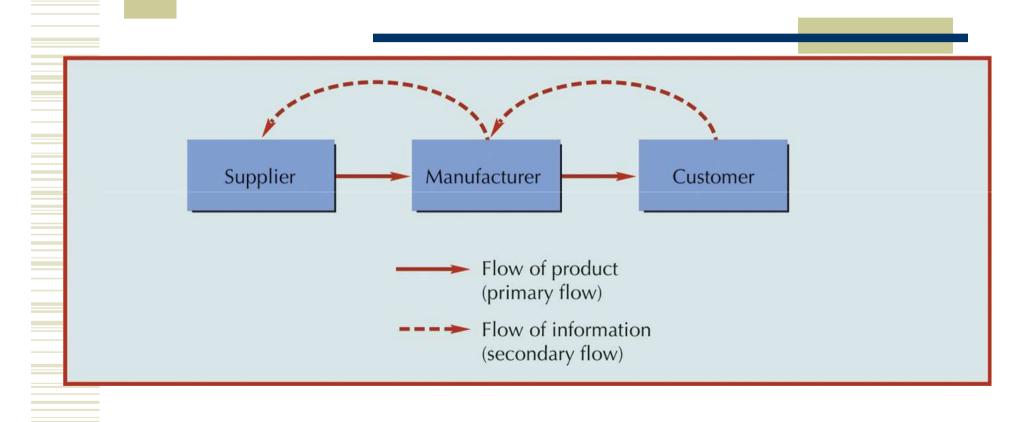
Operations

Inspection

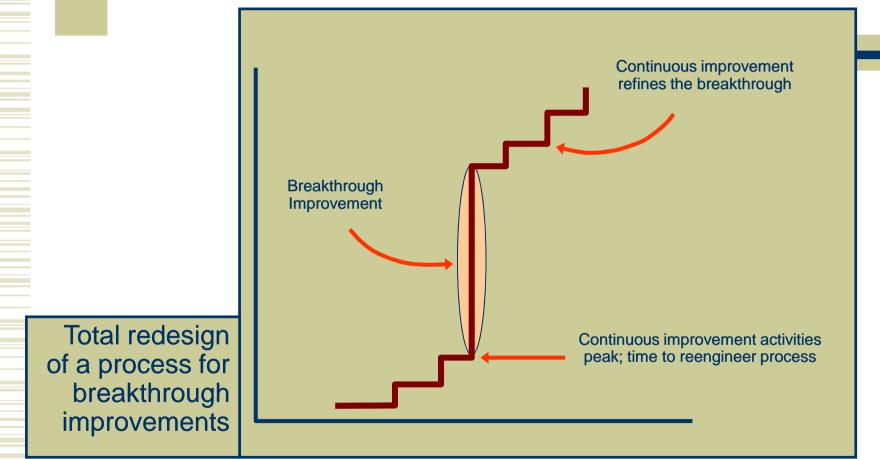


Delay

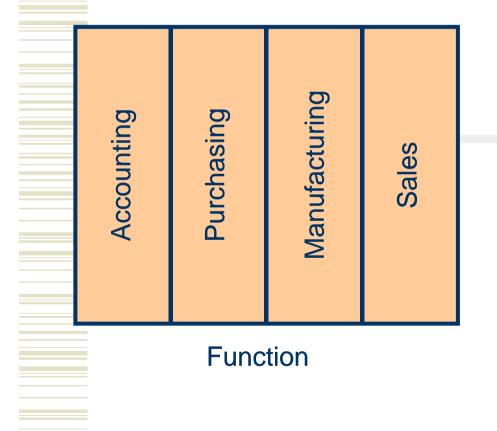
Storage


Date: 9-30-06 Analyst: TLR						Location: Graves Mountain Process: Applesauce			
Step	Operation	Transport	Inspect	Delay	Storage	Description of process	Time (min)	Distance (feet)	
1	٩	\$		D	∇	Unload apples from truck	20		
2	0	Þ		D	V	Move to inspection station		100 ft	
3	0	\$		D	∇	Weigh, inspect, sort	30		
4	0	*	P	D	V	Move to storage		50 ft	
5	0	₽			≫	Wait until needed	360		
6	0	*	6	D	∇	Move to peeler		20 ft	
7	¢	R		D	∇	Peel and core apples	15		
8	0	₽		A	>▼	Soak in water until needed	20		
9	¢	B		D	∇	Place on conveyor	5		
10	0	\$		D	V	Move to mixing area		20 ft	
Page 1 of 3			3		Total	450	190 ft		

Process Flowchart of Apple Processin g

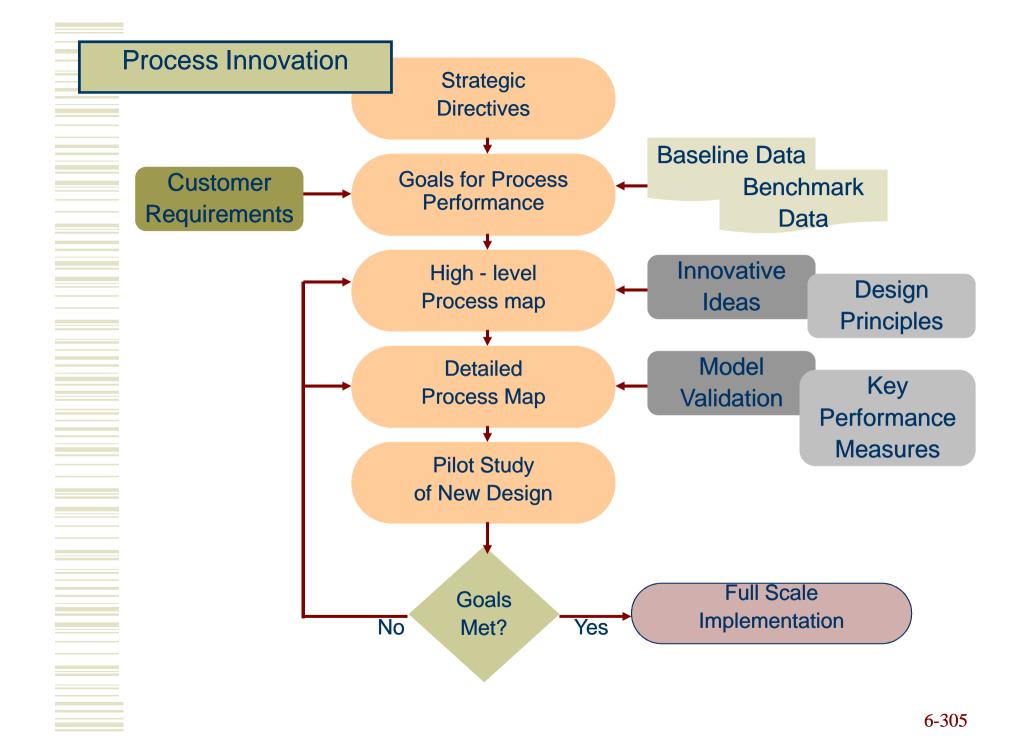


6-301

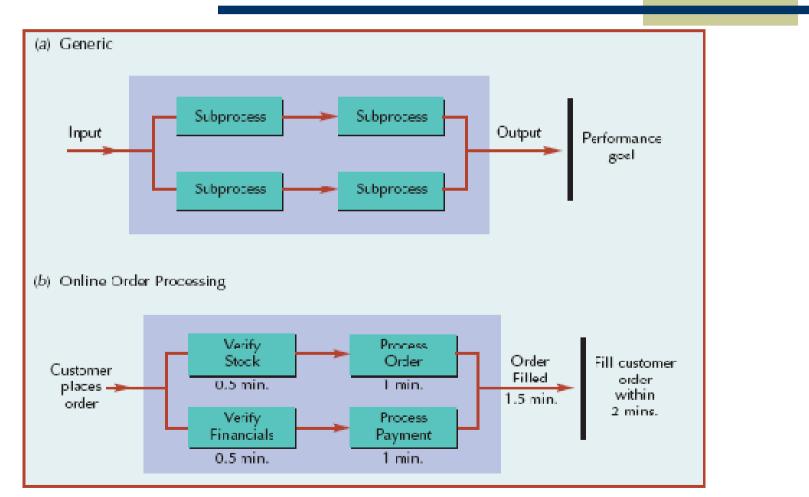

Simple Value Chain Flowchart

Process Innovation

From Function to Process


Product Development

Order Fulfillment


Supply Chain Management

Customer Service

Process

High-Level Process Map

Principles for Redesigning Processes

- Remove waste, simplify, and consolidate similar activities
- Link processes to create value
- Let the swiftest and most capable enterprise execute the process
- Flex process for any time, any place, any way
- Capture information digitally at the source and propagate it through process

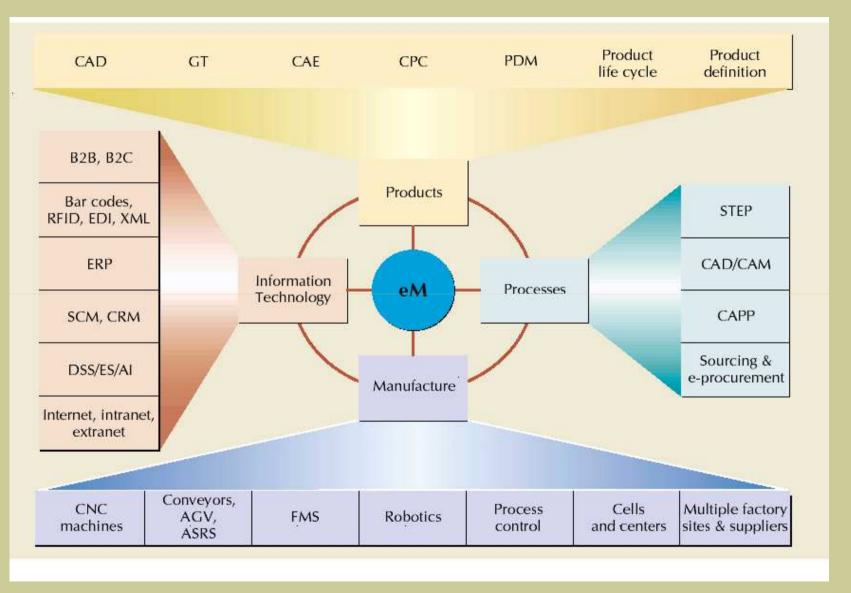
Principles for Redesigning Processes (cont.)

- Provide visibility through fresher and richer information about process status
- Fit process with sensors and feedback loops that can prompt action
- Add analytic capabilities to process

- Connect, collect, and create knowledge around process through all who touch it
- Personalize process with preferences and habits of participants

Techniques for Generating Innovative Ideas

- Vary the entry point to a problem
 - in trying to untangle fishing lines, it's best to start from the fish, not the poles
- Draw analogies
 - a previous solution to an old problem might work
- Change your perspective
 - think like a customer
 - bring in persons who have no knowledge of process


Techniques for Generating Innovative Ideas (cont.)

- Try inverse brainstorming
 - what would increase cost
 - what would displease the customer
- Chain forward as far as possible
 - if I solve this problem, what is the next problem
- Use attribute brainstorming
 - how would this process operate if...
 - our workers were mobile and flexible
 - there were no monetary constraints
 - we had perfect knowledge

Technology Decisions

- Financial justification of technology
 - Purchase cost
 - Operating Costs
 - Annual Savings
 - Revenue Enhancement
 - Replacement Analysis
 - Risk and Uncertainty
 - Piecemeal Analysis

Components of e-Manufacturing

A Technology Primer

Product Technology

- Computer-aided design (CAD)
- Group technology (GT)
- Computer-aided engineering (CAE)
- Collaborative product commerce (CPC)

- Creates and communicates designs electronically
- Classifies designs into families for easy retrieval and modification
- Tests functionality of CAD designs electronically
- Facilitates electronic communication and exchange of information among designers and suppliers

Product Technology

- Product data management (PDM)
- Product life cycle management (PLM)
- Product configuration

- Keeps track of design specs and revisions for the life of the product
- Integrates decisions of those involved in product development, manufacturing, sales, customer service, recycling, and disposal
- Defines products "configured" by customers who have selected among various options, usually from a Web site

Process Technology

- Standard for exchange of product model data (STEP)
- Computer-aided design and manufacture (CAD/CAM)
- Computer aided process (CAPP)
- E-procurement

- Set standards for communication among different CAD vendors; translates CAD data into requirements for automated inspection and manufacture
- Electronic link between automated design (CAD) and automated manufacture (CAM)
- Generates process plans based on database of similar requirements
- Electronic purchasing of items from emarketplaces, auctions, or company websites

Manufacturing Technology

- Computer numerically control (CNC)
- Flexible manufacturing system (FMS)
- Robots
- Conveyors

- Machines controlled by software code to perform a variety of operations with the help of automated tool changers; also collects processing information and quality data
- A collection of CNC machines connected by an automated material handling system to produce a wide variety of parts
- Manipulators that can be programmed to perform repetitive tasks; more consistent than workers but less flexible
- Fixed-path material handling; moves items along a belt or overhead chain; "reads" packages and diverts them to different directions; can be very fast

Manufacturing Technology

- Automatic guided vehicle (AGV)
- Automated storage and retrieval system (ASRS)
- Process Control
- Computer-integrated manufacturing (CIM)

- A driverless truck that moves material along a specified path; directed by wire or tape embedded in floor or by radio frequencies; very flexible
- An automated warehouse—some 26 stores high in which items are placed in a carousel-type storage system and retrieved by fast-moving stacker cranes; controlled by computer
- Continuous monitoring of automated equipment; makes real-time decisions on ongoing operation, maintenance, and quality
- Automated manufacturing systems integrated through computer technology; also called emanufacturing

Information Technology

- Business to Business (B2B)
- Business to Consumer (B2C)
- Internet
- Intranet

Extranet

- Electronic transactions between businesses usually over the Internet
- Electronic transactions between businesses and their customers usually over the Internet
- A global information system of computer networks that facilitates communication and data transfer
- Communication networks internal to an organization; can be password (i.e., firewall) protected sites on the Internet
- Intranets connected to the Internet for shared access with select suppliers, customers, and trading partners

Information Technology

- Bar Codes
- Radio Frequency Identification tags (RFID)
- Electronic data interchange (EDI)

- Extensive markup language (XML)
- Enterprise resource planning (ERP)

- A series of vertical lines printed on most packages that identifies item and other information when read by a scanner
- An integrated circuit embedded in a tag that can send and receive information; a twenty-first century bar code with read/write capabilities
- A computer-to-computer exchange of business documents over a proprietary network; very expensive and inflexible
- A programming language that enables computer to computer communication over the Internet by tagging data before its is sent
- Software for managing basic requirements of an enterprise, including sales & marketing, finance and accounting, production & materials management, and human resources

Information Technology

- Supply chain management (SCM)
- Customer relationship management (CRM)
- Decision support systems (DSS)

- Expert systems (ES)
- Artificial intelligence (AI)

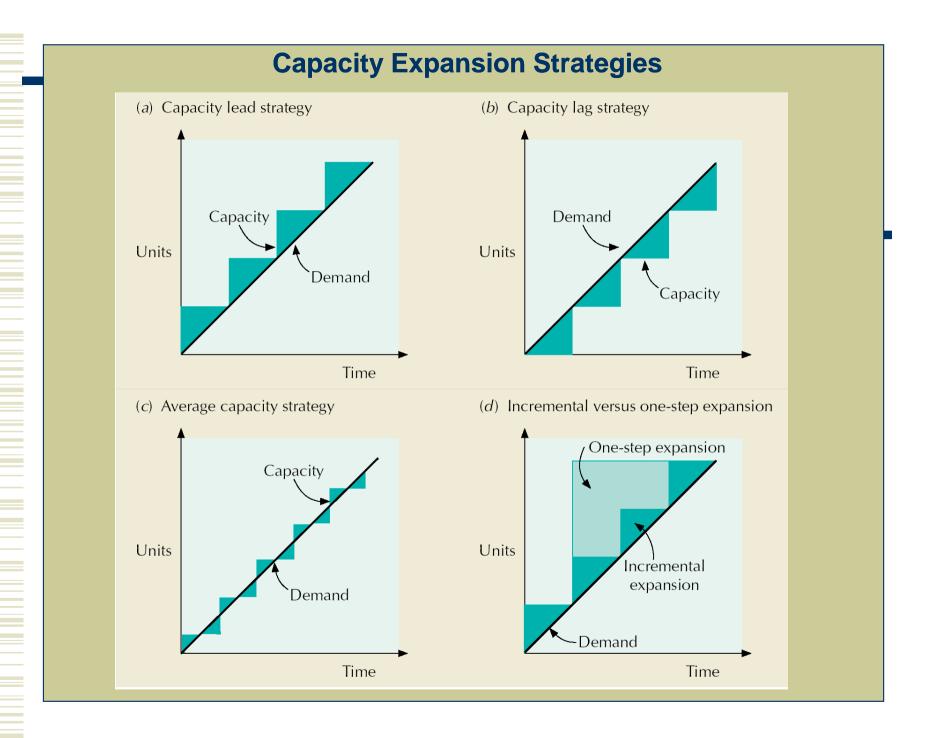
- Software for managing flow of goods and information among a network of suppliers, manufacturers and distributors
- Software for managing interactions with customers and compiling and analyzing customer data
- An information system that helps managers make decisions; includes a quantitative modeling component and an interactive component for what-if analysis
- A computer system that uses an expert knowledge base to diagnose or solve a problem
- A field of study that attempts to replicate elements of human thought in computer processes; includes expert systems, genetic algorithms, neural networks, and fuzzy logic

Chapter 7

Capacity and Facilities

Operations Management

Roberta Russell & Bernard W. Taylor, III

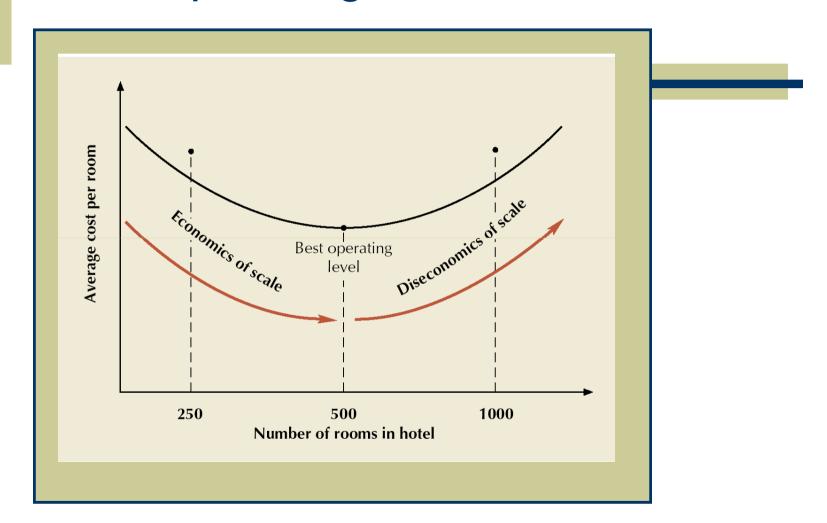


Lecture Outline

- Capacity Planning
- Basic Layouts
- Designing Process Layouts
- Designing Service Layouts
- Designing Product Layouts
- Hybrid Layouts

Capacity

- Maximum capability to produce
- Capacity planning
 - establishes overall level of productive resources for a firm
- 3 basic strategies for timing of capacity expansion in relation to steady growth in demand (lead, lag, and average)


Capacity (cont.)

- Capacity increase depends on
 - volume and certainty of anticipated demand
 - strategic objectives
 - costs of expansion and operation
- Best operating level
 - % of capacity utilization that minimizes unit costs
- Capacity cushion
 - % of capacity held in reserve for unexpected occurrences

Economies of Scale

- it costs less per unit to produce high levels of output
 - fixed costs can be spread over a larger number of units
 - production or operating costs do not increase linearly with output levels
 - quantity discounts are available for material purchases
 - operating efficiency increases as workers gain experience

Best Operating Level for a Hotel

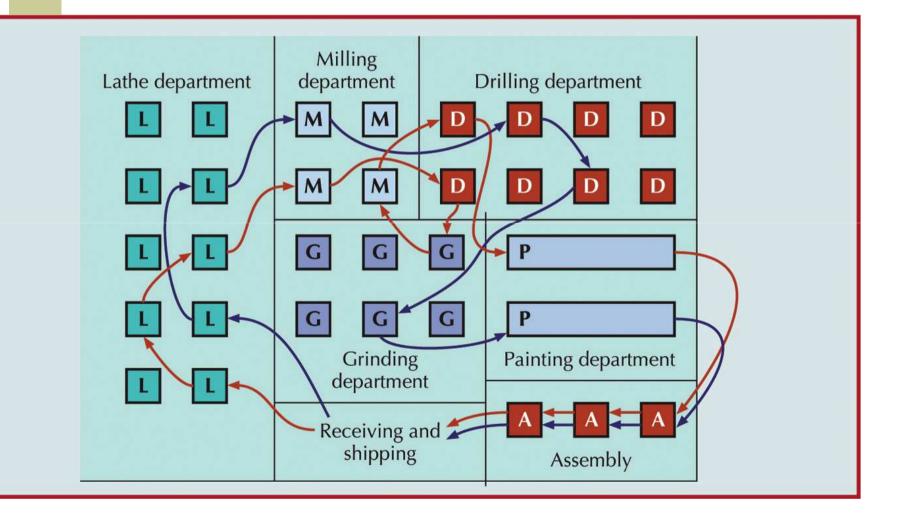
Machine Objectives of Facility Layout

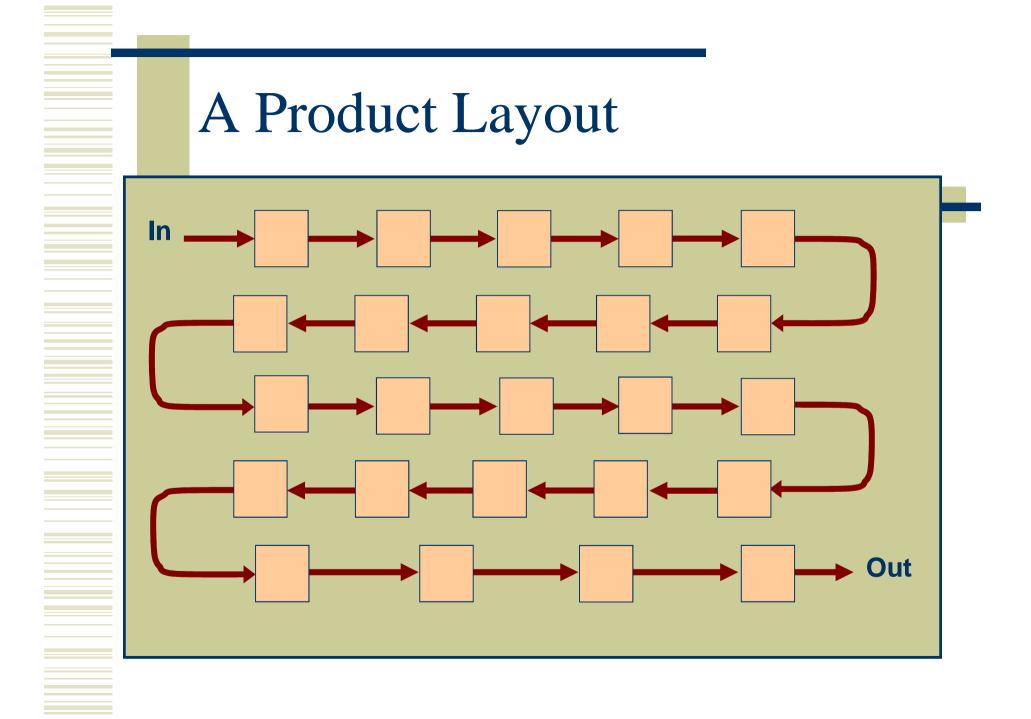
Arrangement of areas within a facility to:

- Minimize material-handling costs
- Utilize space efficiently
- Utilize labor efficiently
- Eliminate bottlenecks
- Facilitate communication and interaction
 - Reduce manufacturing cycle time
- Reduce customer service time
- Eliminate wasted or redundant movement
- Increase capacity

- Facilitate entry, exit, and placement of material, products, and people
- Incorporate safety and security measures
- Promote product and service quality
- Encourage proper maintenance activities
- Provide a visual control of activities
- Provide flexibility to adapt to changing conditions

BASIC LAYOUTS


Process layouts


- group similar activities together according to process or function they perform
- Product layouts
 - arrange activities in line according to sequence of operations for a particular product or service
- Fixed-position layouts
 - are used for projects in which product cannot be moved

Process Layout in Services

Women's lingerie	Shoes	Housewares
Women's dresses	Cosmetics and jewelry	Children's department
Women's sportswear	Entry and display area	Men's department

Manufacturing Process Layout

Comparison of Product and Process Layouts

	Product	Process
 Description 	 Sequential arrangement of activities 	 Functional grouping of activities
 Type of process 	 Continuous, mass production, mainly assembly 	 Intermittent, job shop, batch production, mainly fabrication
Product	 Standardized, made to stock 	 Varied, made to order
Demand	Stable	 Fluctuating
Volume	 ♦ High 	• Low
 Equipment 	 Special purpose 	General purpose

Comparison of Product and Process Layouts

Product

- Inventory
- Storage space
- Material handling
- Aisles
- Scheduling
- Layout decision
- Goal

Advantage

• Limited skills

- Low in-process, high finished goods
- Small
- Fixed path (conveyor)
- Narrow
- Part of balancing
- Line balancing
- Equalize work at each station
- Efficiency

- Varied skills
- High in-process, low finished goods

Process

- Large
- Variable path (forklift)
- Wide
- Dynamic
- Machine location
- Minimize material handling cost
- Flexibility

Fixed-Position Layouts

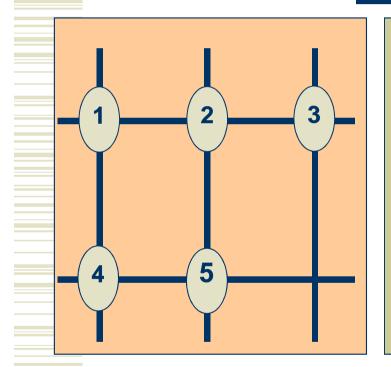
- Typical of projects in which product produced is too fragile, bulky, or heavy to move
- Equipment, workers, materials, other resources brought to the site
- Low equipment utilization
- Highly skilled labor
- Typically low fixed cost
- Often high variable costs

7-335

Designing Process Layouts

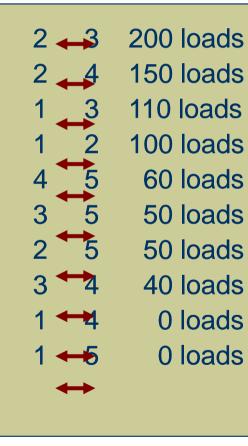
- Goal: minimize material handling costs
- Block Diagramming
 - minimize nonadjacent loads
 - use when quantitative data is available
- Relationship Diagramming
 - based on location preference between areas
 - use when quantitative data is not available

Block Diagramming

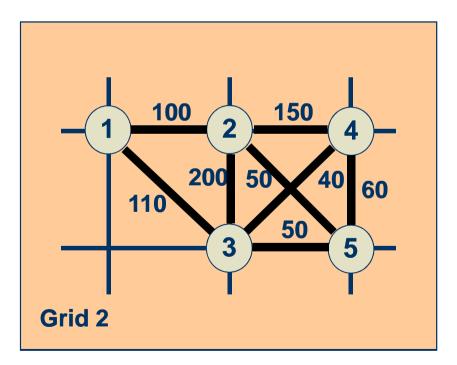

Unit load

- quantity in which material is normally moved
- Nonadjacent load
 - distance farther than the next block

STEPS


- create load summary chart
- calculate composite (two way) movements
- develop trial layouts minimizing number of nonadjacent loads

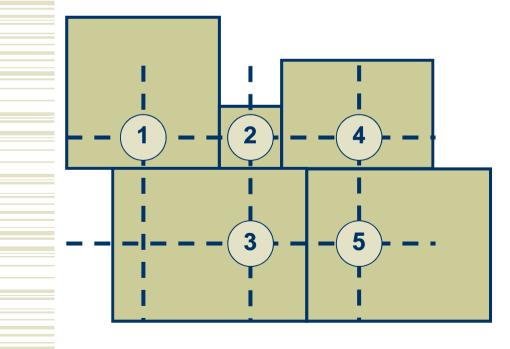
Block Diagramming: Example

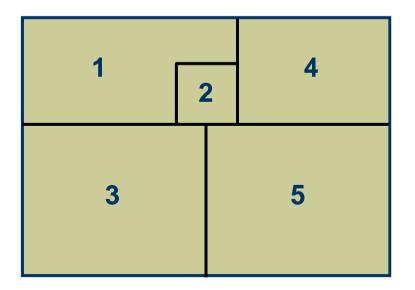


Load Summary Chart							
FROM/TO		DEI	PARTME	ENT			
Department	1	2	3	4	5		
1	—	100	50				
2		—	200	50			
3	60			40	50		
4		100			60		
5			50				

Block Diagramming: Example (cont.)

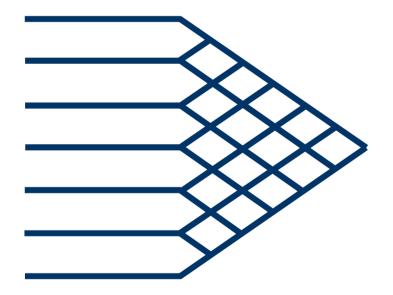
Nonadjacent Loads: 0

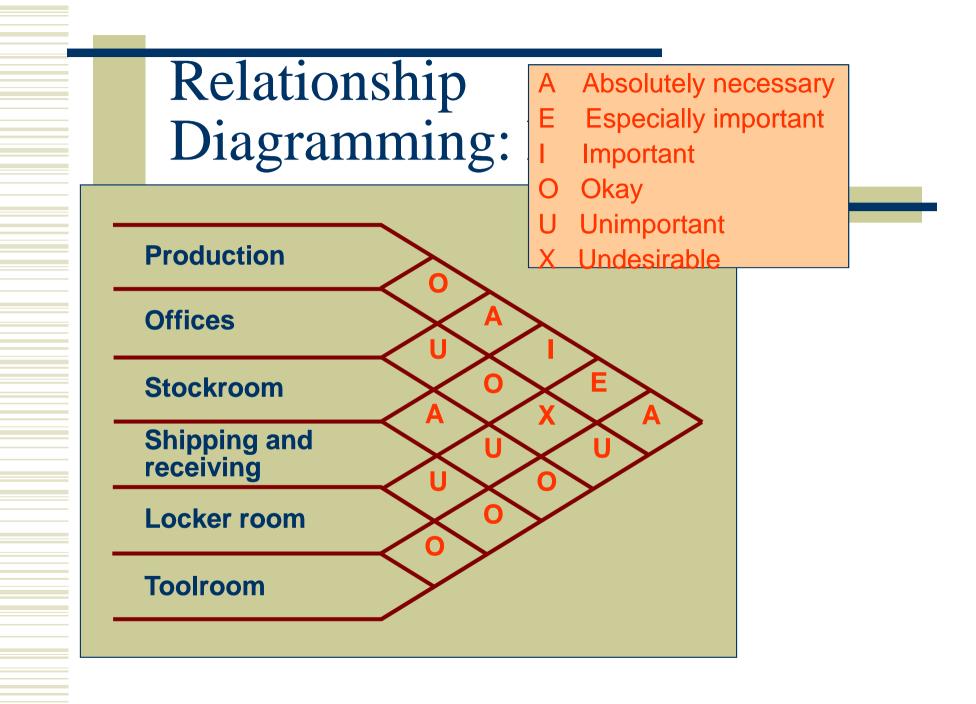



Block Diagramming: Example (cont.)

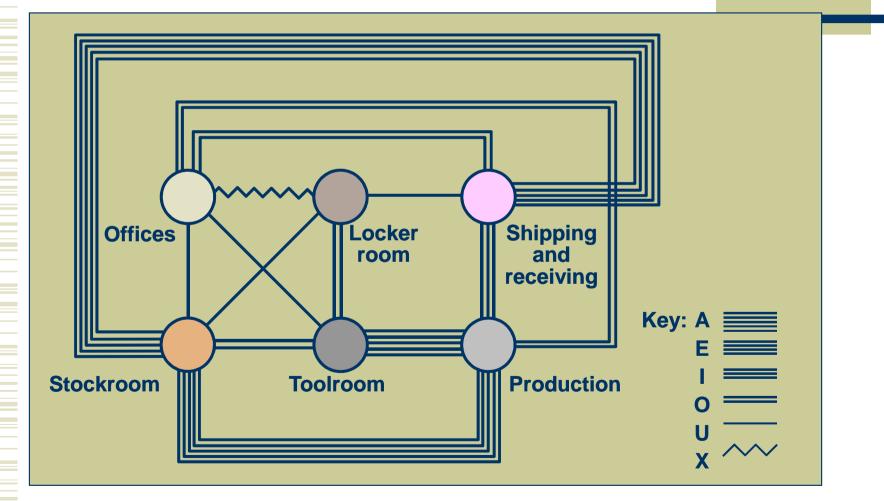
- Block Diagram
 - type of schematic layout diagram; includes space requirements

(a) Initial block diagram

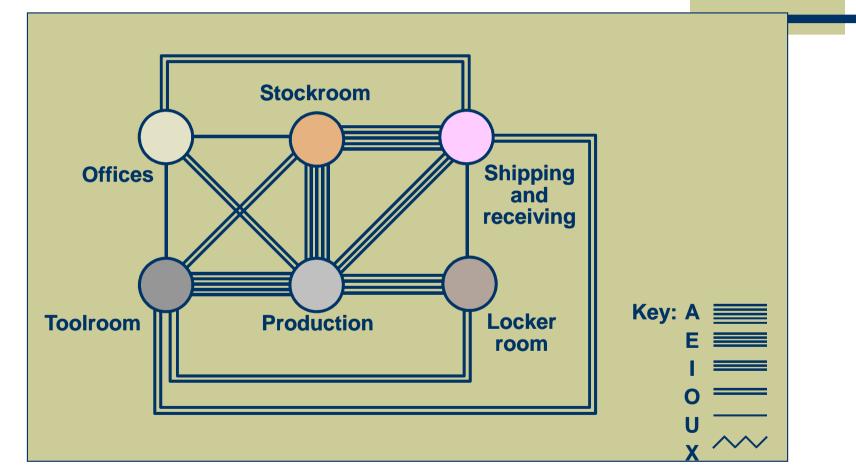

(b) Final block diagram


Relationship Diagramming

- Schematic diagram that uses weighted lines to denote location preference
- Muther's grid
 - format for displaying manager preferences for department locations


Relationship Diagramming: Excel

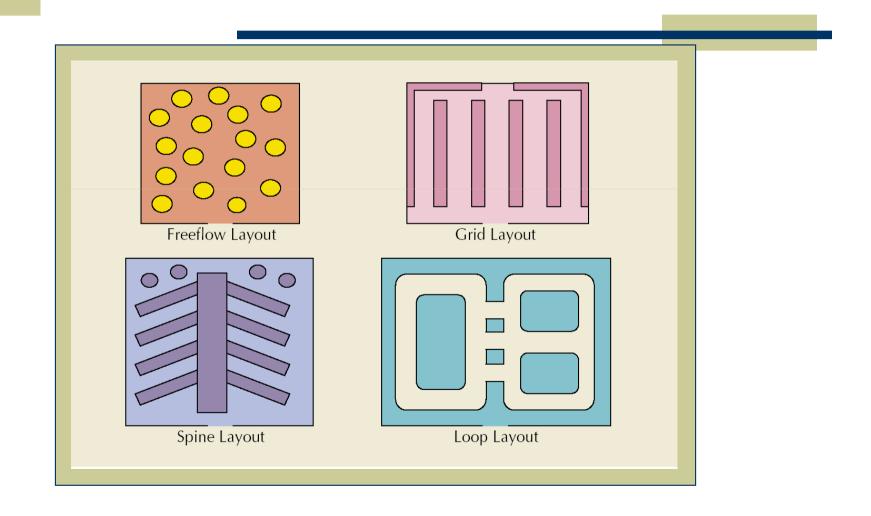
1	Eile Edit	Yiew Insert I	Format	Iools Da	ata OM	Tools 1	Window	Help	Adobe PDF			
	💕 🖬 🖪	A18 41	12 12	XE	2 3	1 19 -	01 - 11	2 🔵	- 21 21 1	100%	- 0	Aria
	022			ODUCT(C								
T	A	В	С	D	E	F	G	L	M	N	0	
1	Process	avout	-		Exam	ple - 7		-				
2		- your							-	State of the state		<u> </u>
	Input:							-		summary and		
1	impuc.			Load S	umman	Chart	1			calculate the i mprove the se		
5		From To	li i		partme			1		exchanges. Se		
5	Location Assigned	Department	1	,	3	4	5			h the fewest n		n
	1	1		100	50		-		Conner	1		
	2	2			200	50			Enter dep	artments her	e:	
	3	3	60			40	50			1		
	4	4		100			60		1	2	3	
1	5	5		50					4	5		
2		Inputlos	daum	mary	/	1						
5		Input loa										Try different layout
6		chart and	trial l	ayout						Exchange		
	Calculation	5:									-	configurations
3				Dista	nce Ma	ntrix		_		1		
9		Distance		-	partme	1			De	ept1 and Dept	2 -	
D		From To	1	2	3	4	5	-			2276	
1		1	0	0	1	0	0		Output:		450	
2		2	0	0	0	0	0		Nonadjac	ent loads =	150	Excel will calculate
3		3	1	0	0		0	-				
4		4	0	U	0	0	0					— composite movements


Relationship Diagrams: Example (cont.)

(a) Relationship diagram of original layout

Relationship Diagrams: Example (cont.)

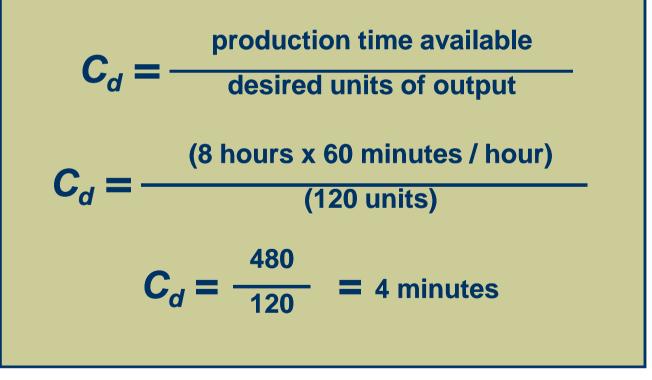
(b) Relationship diagram of revised layout


Computerized layout Solutions

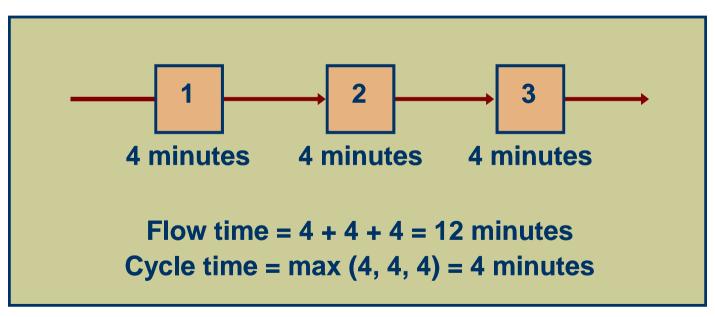
- CRAFT
 - Computerized Relative Allocation of Facilities Technique
- CORELAP
 - Computerized Relationship Layout Planning
- PROMODEL and EXTEND
 - visual feedback
 - allow user to quickly test a variety of scenarios
- Three-D modeling and CAD
 - integrated layout analysis
 - available in VisFactory and similar software

Designing Service Layouts

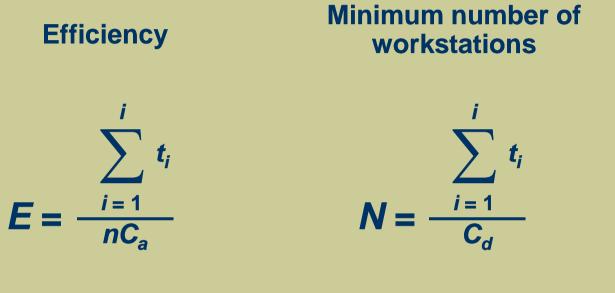
- Must be both attractive and functional
 - Types
 - Free flow layouts
 - encourage browsing, increase impulse purchasing, are flexible and visually appealing
 - Grid layouts
 - encourage customer familiarity, are low cost, easy to clean and secure, and good for repeat customers
 - Loop and Spine layouts
 - both increase customer sightlines and exposure to products, while encouraging customer to circulate through the entire store


Types of Store Layouts

Designing Product Layouts


- Objective
 - Balance the assembly line
- Line balancing
 - tries to equalize the amount of work at each workstation
- Precedence requirements
 - physical restrictions on the order in which operations are performed
- Cycle time
 - maximum amount of time a product is allowed to spend at each workstation

Cycle Time Example



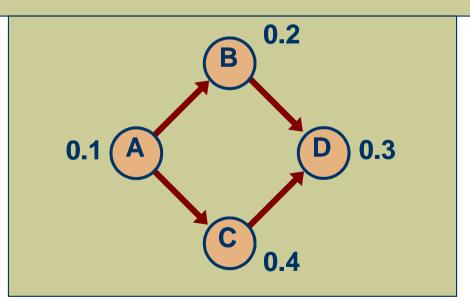
- Cycle time = max time spent at any station
- Flow time = time to complete all stations

Efficiency of Line and Balance Delay

Balance delay

- total idle time of line
- calculated as (1 efficiency)

where


- t_i = completion time for element *i*
- *j* = number of work elements
- *n* = actual number of workstations
- C_a = actual cycle time
- C_d = desired cycle time

Line Balancing Procedure

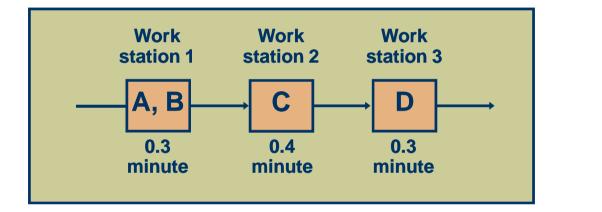
- 1. Draw and label a precedence diagram
- 2. Calculate desired cycle time required for line
- 3. Calculate theoretical minimum number of workstations
- 4. Group elements into workstations, recognizing cycle time and precedence constraints
- 5. Calculate efficiency of line
- 6. Determine if theoretical minimum number of workstations or an acceptable efficiency level has been reached. If not, go back to step 4.

Line Balancing: Example

	WORK ELEMENT	PRECEDENCE	TIME (MIN)
Α	Press out sheet of fruit	—	0.1
B	Cut into strips	Α	0.2
С	Outline fun shapes	Α	0.4
D	Roll up and package	B , C	0.3

Line Balancing: Example (cont.)

	WORK ELEMENT	PRECEDENCE	TIME (MIN)				
Α	Press out sheet of fruit	—	0.1				
В	Cut into strips	Α	0.2				
С	Outline fun shapes	Α	0.4				
D	Roll up and package	B, C	0.3				
$C_d = \frac{40 \text{ hours x 60 minutes / hour}}{6,000 \text{ units}} = \frac{2400}{6000} = 0.4 \text{ minute}$							
	$N = \frac{0.1 + 0.2 + 0.3 + 0.4}{$	$\frac{1.0}{0.4} = 2.5 \rightarrow 3 \text{ wo}$	rkstations				


Line Balancing: Example (cont.)

LIIIC Da	liancing.	Example	(COIII.)
WORKSTATION 1 2 3	ELEMENT A B C D	REMAINING TIME 0.3 0.1 0.0 0.1	REMAINING ELEMENTS B, C C, D D none
	0. A C	0.2 D 0.3 0.4	<i>C_d</i> = 0.4 <i>N</i> = 2.5

Line Balancing: Example (cont.)

 $C_{d} = 0.4$

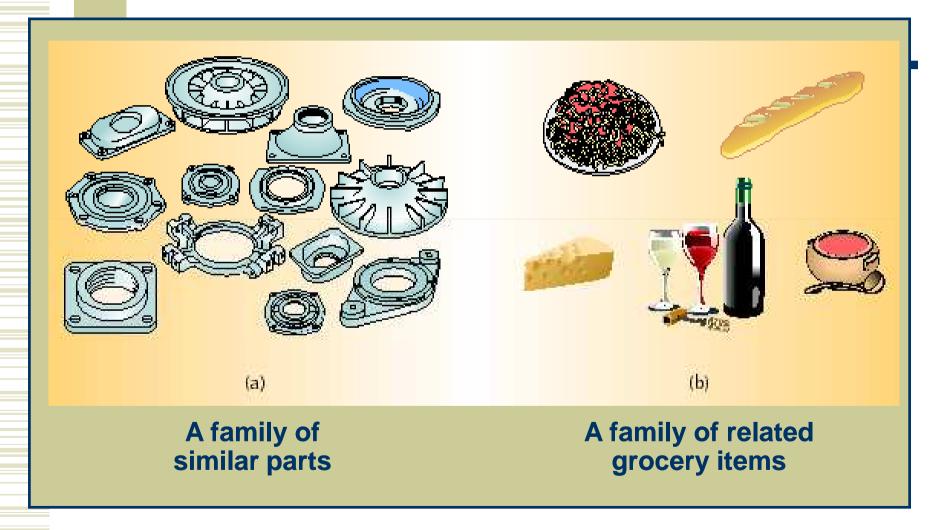
N = 2.5

$$E = \frac{0.1 + 0.2 + 0.3 + 0.4}{3(0.4)} = \frac{1.0}{1.2} = 0.833 = 83.3\%$$

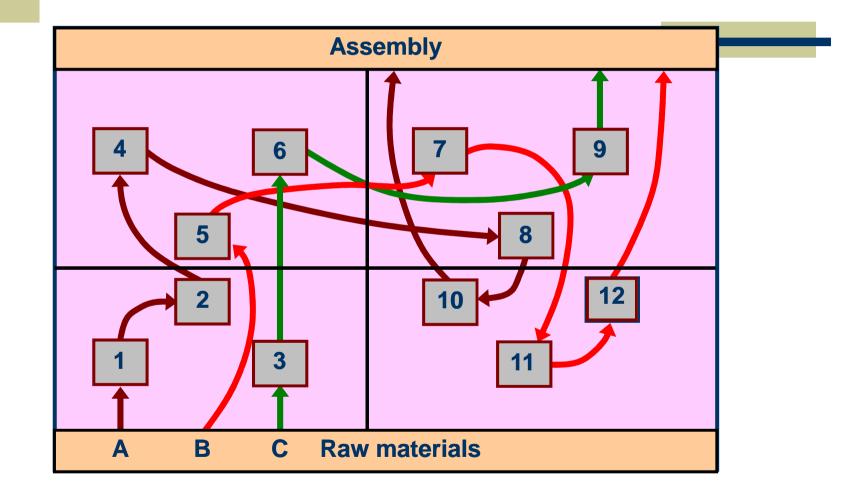
Computerized Line Balancing

- Use heuristics to assign tasks to workstations
 - Longest operation time
 - Shortest operation time
 - Most number of following tasks
 - Least number of following tasks
 - Ranked positional weight

Hybrid Layouts

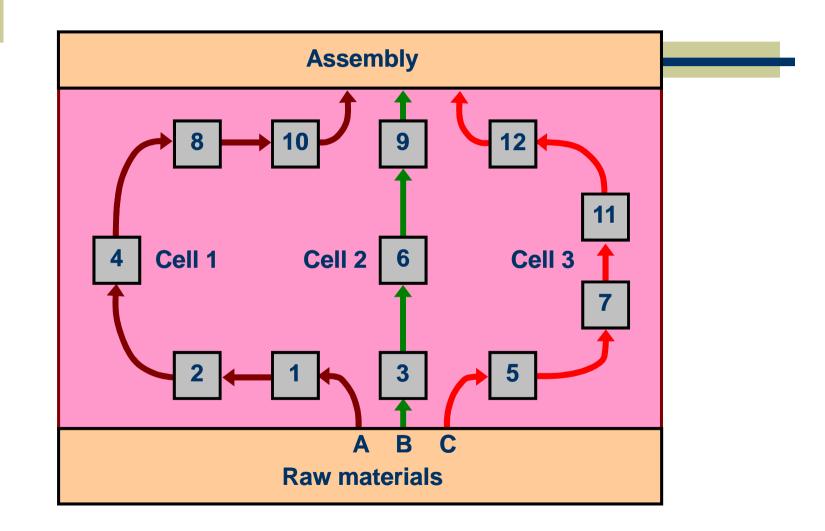

Cellular layouts

- group dissimilar machines into work centers (called cells) that process families of parts with similar shapes or processing requirements
- Production flow analysis (PFA)
 - reorders part routing matrices to identify families of parts with similar processing requirements
- Flexible manufacturing system
 - automated machining and material handling systems which can produce an enormous variety of items
- Mixed-model assembly line
 - processes more than one product model in one line

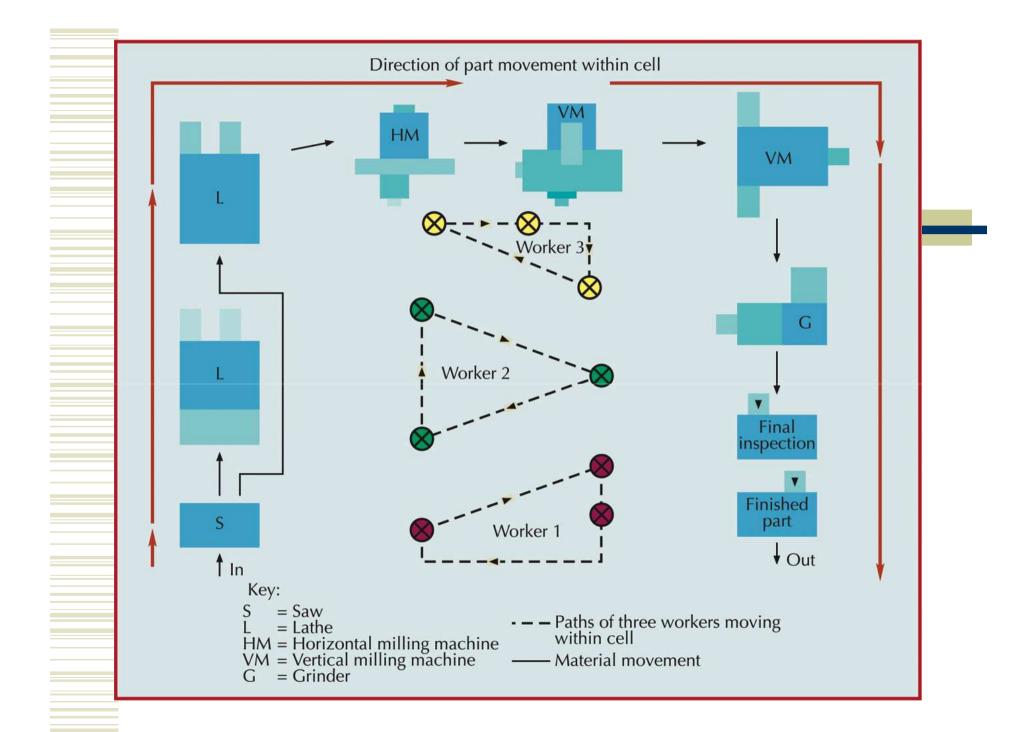

Cellular Layouts

- 1. Identify families of parts with similar flow paths
- 2. Group machines into cells based on part families
- 3. Arrange cells so material movement is minimized
- 4. Locate large shared machines at point of use

Parts Families


Original Process Layout

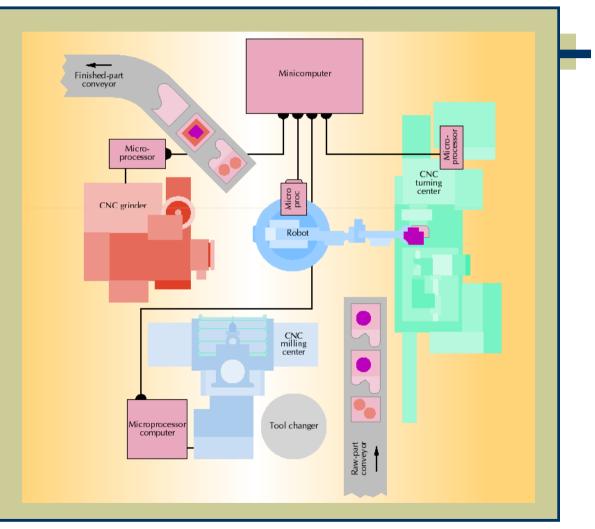
Part Routing Matrix


Part	R	out	tin	g I	Ma	atri	X					
				N	lach	ines	5					
Parts	1	2	3	4	5	6	7	8	9	10	11	12
Α	X	X		X				X		X		
В					X		X				X	x
С			X			X			X			
D	x	X		X				X		X		
E				X	X							x
F	x			X				X				
G			X			X			X			x
н							X				X	x

Revised Cellular Layout

Reordered Routing Matrix

Reordered Routing Matrix												_	
Machines													
Parts	1	2	4	8	10	3	6	9	5	7	11	12	
Α	X	Χ	X	X	X								1
D	X	X	X	X	X								
F	X		X	X									
С						X	X	X					
G						Х	Х	Χ]			X	
В									x	X	X	X	
н					l					X	X	X	
E							X		X			X	

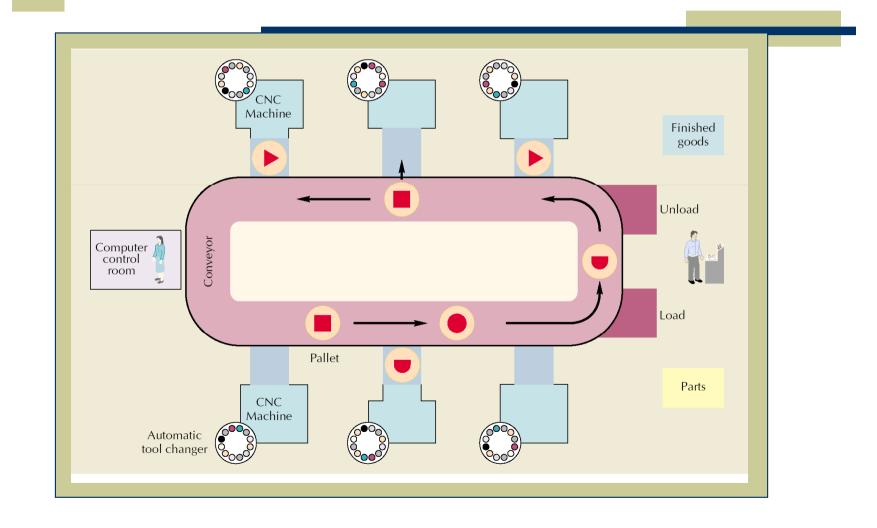

Advantages and Disadvantages of Cellular Layouts

Advantages

- Reduced material handling and transit time
- Reduced setup time
- Reduced work-inprocess inventory
- Better use of human resources
- Easier to control
- Easier to automate

- Disadvantages
 - Inadequate part families
 - Poorly balanced cells
 - Expanded training and scheduling of workers
 - Increased capital investment

Automated Manufacturing Cell

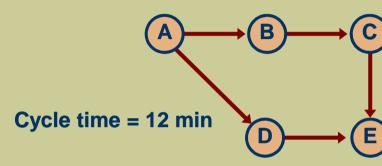

Setup Time, Make Small Lot Production Economical." Industrial Engineering (November 1983)

Source: J. T. Black, "Cellular Manufacturing Systems Reduce

Flexible Manufacturing Systems (FMS)

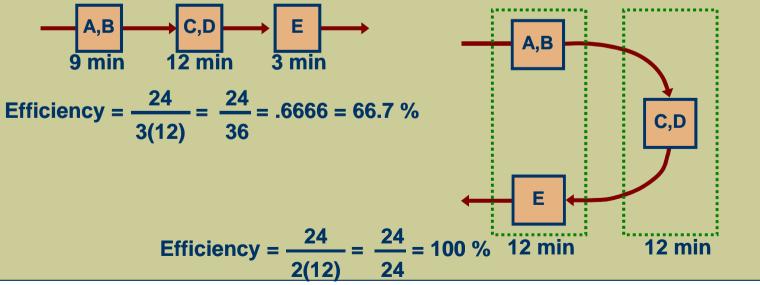
- FMS consists of numerous programmable machine tools connected by an automated material handling system and controlled by a common computer network
- FMS combines flexibility with efficiency
- FMS layouts differ based on
 - variety of parts that the system can process
 - size of parts processed
 - average processing time required for part completion

Full-Blown FMS



Mixed Model Assembly Lines

- Produce multiple models in any order on one assembly line
- Issues in mixed model lines
 - Line balancing
 - U-shaped lines
 - Flexible workforce
 - Model sequencing


Balancing U-Shaped Lines

Precedence diagram:

(a) Balanced for a straight line

Chapter 7 Supplement

Facility Location Models

Operations Management

Roberta Russell & Bernard W. Taylor, III

Lecture Outline

- Types of Facilities
- Site Selection: Where to Locate
- Location Analysis Techniques

Types of Facilities

- Heavy-manufacturing facilities
 - large, require a lot of space, and are expensive
- Light-industry facilities
 - smaller, cleaner plants and usually less costly
- Retail and service facilities
 - smallest and least costly

Factors in Heavy Manufacturing Location

- Construction costs
- Land costs
- Raw material and finished goods shipment modes
- Proximity to raw materials
- Utilities
- Means of waste disposal
- Labor availability

Factors in Light Industry Location

- Land costs
- Transportation costs
- Proximity to markets
 - depending on delivery requirements including frequency of delivery required by customer

Factors in Retail Location

- Proximity to customers
- Location is everything

Site Selection: Where to Locate

- Infrequent but important
 - being "in the right place at the right time"
- Must consider other factors, especially financial considerations
- Location decisions made more often for service operations than manufacturing facilities
- Location criteria for service
 - access to customers

- Location criteria for manufacturing facility
 - nature of labor force
 - labor costs
 - proximity to suppliers and markets
 - distribution and transportation costs
 - energy availability and cost
 - community infrastructure
 - quality of life in community
 - government regulations and taxes

Global Location Factors

- Government stability
- Government regulations
- Political and economic systems
- Economic stability and growth
- Exchange rates
- Culture
- Climate
- Export/import regulations, duties and tariffs

- Raw material availability
- Number and proximity of suppliers
- Transportation and distribution system
- Labor cost and education
- Available technology
- Commercial travel
- Technical expertise
- Cross-border trade regulations
- Group trade agreements

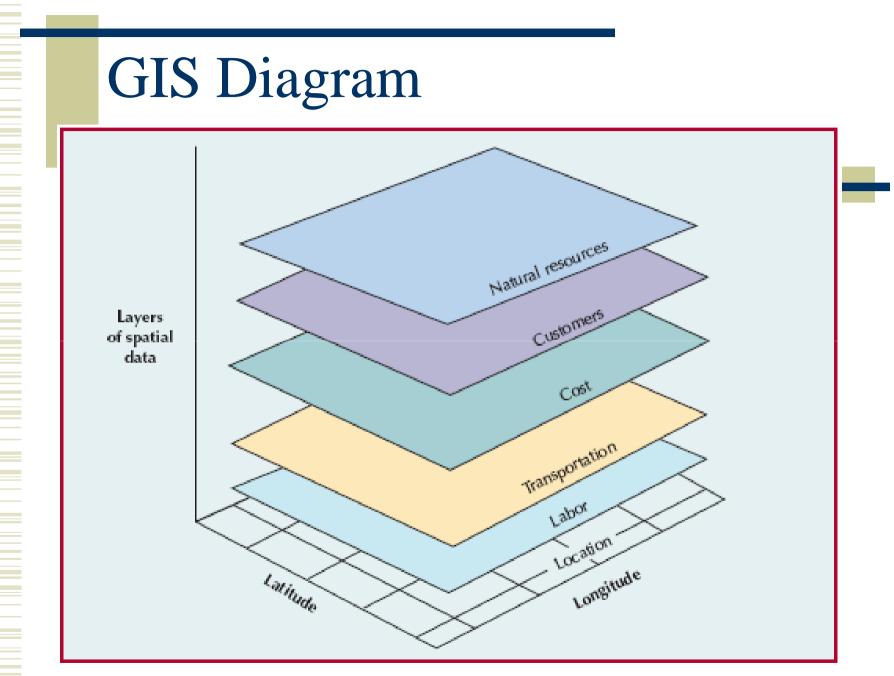
Regional and Community Location Factors in U.S.

- Labor (availability, education, cost, and unions)
- Proximity of customers
- Number of customers
- Construction/leasing costs
- Land cost

- Modes and quality of transportation
- Transportation costs
- Community government Local business regulations
- Government services (e.g., Chamber of Commerce)

Regional and Community Location Factors in U.S. (cont.)

- Business climate
- Community services
- Incentive packages
- Government regulations
- Environmental regulations
- Raw material availability
- Commercial travel
- Climate

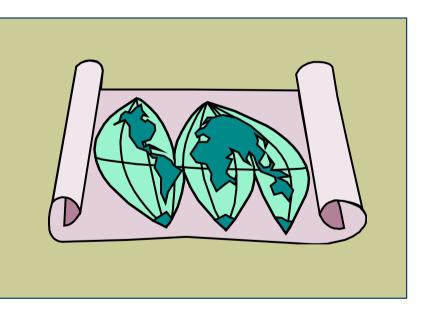

- Infrastructure (e.g., roads, water, sewers)
- Quality of life
- Taxes
- Availability of sites
- Financial services
- Community inducements
- Proximity of suppliers
- Education system

Location Incentives

- Tax credits
- Relaxed government regulation
- Job training
- Infrastructure improvement
- Money

Geographic Information Systems (GIS)

- Computerized system for storing, managing, creating, analyzing, integrating, and digitally displaying geographic, i.e., spatial, data
- Specifically used for site selection
- enables users to integrate large quantities of information about potential sites and analyze these data with many different, powerful analytical tools


Supplement 7-385

Location Analysis Techniques

Location factor rating

Center-of-gravity

Load-distance

Location Factor Rating

- Identify important factors
 - Weight factors (0.00 1.00)
 - Subjectively score each factor (0 100)
 - Sum weighted scores

Location Factor Rating: Example

	S	CORES (0 TO 100)	
LOCATION FACTOR	WEIGHT	Site 1	Site 2	Site 3
Labor pool and climate	.30	80	65	90
Proximity to suppliers	.20	100	91	75
Wage rates	.15	60	95	72
Community environment	.15	75	80	80
Proximity to customers	.10	65	90	95
Shipping modes	.05	85	92	65
Air service	.05	50	65	90
Weighted Score for	"Labor pool	and climation	ate" for	

Site 1 = (0.30)(80) = 24

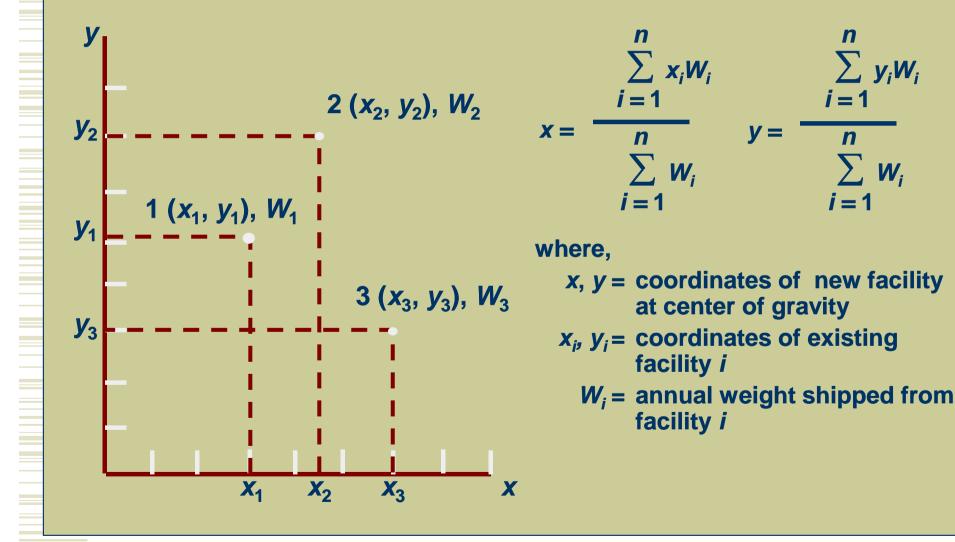
Supplement 7-388

Location Factor Rating: Example (cont.)

WEIGH	HTED SC	ORES
Site 1	Site 2	Site 3
24.00	19.50	27.00
20.00	18.20	15.00
9.00	14.25	10.80
11.25	12.00	12.00
6.50	9.00	9.50
4.25	4.60	3.25
2.50	3.25	4.50
77.50	80.80	82.05

Site 3 has the highest factor rating

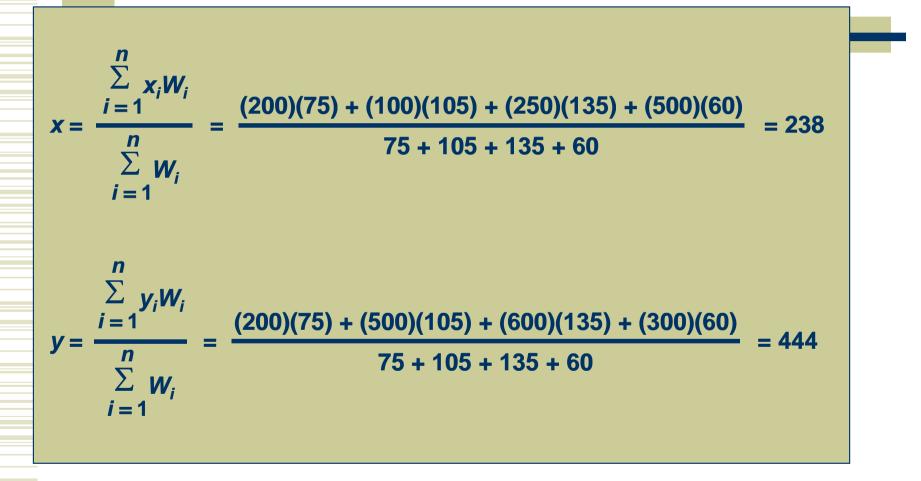
Location Factor Rating with Excel and OM Tools


Microsoft Excel - ExhibitS7.2.LocationFactorRating.xls

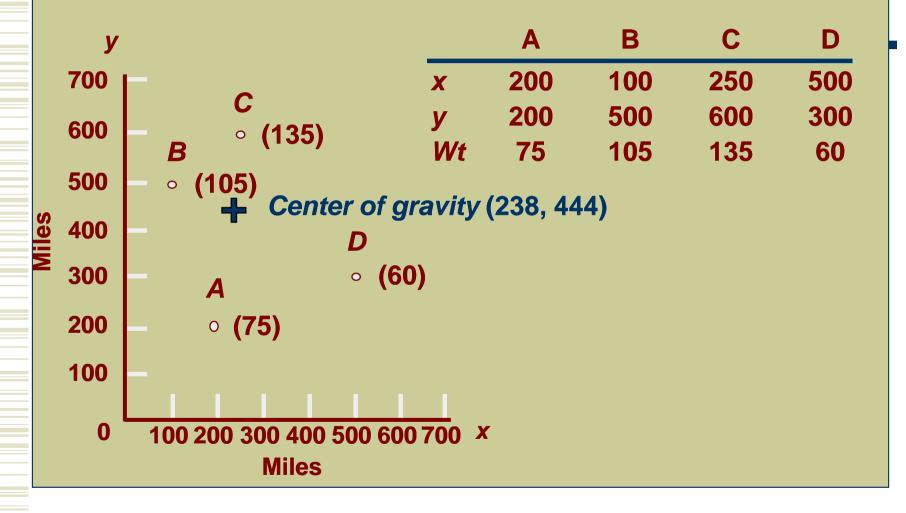
1	Elle Edit View Insert Forma					10. 01. 10		
0			1 83 4 6	2 · · · · · · · ·	• 2+ X+	10	1% · L2	, Anal
12	2 2 3 3 5 6	Y Reply	with Chang	es End Rev	iew 🖕			
	A23 - A							
	A	В	С	D	E	F	G	н
1	Location Factor Rating			OM Stude	nt - Exam	ple S7.1		
2				1			×	1
3		Label the		factors, an	Concerning Concerning	eir weight		
4	Input:		and s	score for ea	ch site.)	
5			SC	ORES (0 to	100)			
6	LOCATION FACTORS	Weight	Site 1	Site 2	Site 3			
7	Labor pool and climate	0.30	80	65	90			
8	Proximity to suppliers	0.20	100	91	75			
9	Wage rates	0.15	60	95	72			
10	Community environment	0.15	75	80	80			
11	Proximity to customers	0.10	65	90	95			
12	Shipping modes	0.05	85	92	65			
13	Air service	0.05	50	65	90			
14		1.00						
15								
16	Output:		Site 1	Site 2	Site 3			
17	Total locat	tion score	77.50	80.80	82.05			-
18					1			

Center-of-Gravity Technique

- Locate facility at center of movement in geographic area
- Based on weight and distance traveled; establishes grid-map of area
- Identify coordinates and weights shipped for each location


Grid-Map Coordinates

Center-of-Gravity Technique: Example


	У			Α	В	С	D
Miles	 700 600 500 400 300 	C o (135) B o (105) D o	x y Wt	200 200 75	100 500 105	250 600 135	500 300 60
	200 100 0	<pre></pre>		~			

Center-of-Gravity Technique: Example (cont.)

Supplement 7-394

Center-of-Gravity Technique: Example (cont.)

Center-of-Gravity Technique with Excel and OM Tools

	Ele Edit	Yiew Insert	Format	Iools Data	OM Tools	₩indow	jelp					
2	🗳 🖬 📆	00.7	× 🗈 i	8-0 -	1 - CX -	🐁 Σ • 🖉	1 31 1	18	100%	· @ .	Arial	- 1
2	ta ta 🖂	6 6 2	Ba Co I	Reply with	Changes E	nd Review						
	A30	+ fx		in the second second	AND DESCONTEN							
	A	B	С	D	E	F	G	1	н	1	J	К
i s		f-Gravity		1.		ent - Exar		,			, in the second	
2		. erany			on our	CIII - CAU				_	_	-
					(abel th	e sites and	input the	load a	nd y v			-
3	Innuts					ates for ea		ivan ai			_	-
5	input:	Coordi	natec	Loads		1		11		_	_	
5	Sites	x	V	W	-							
7	A	200	200	75	1		Cen	ter of	Gravi	ty		
3	B	100	500	105	700 1							
3	C	250	600	135	600 -	•						
0	D	500	300	60	500							
1					400 -						Sites	
2	Output:											
3		Center of	Gravity		300 -				*		Center of Gr	avity
4		x =	238.00		200 -		2					
5		y =	444.00		100 -							
6					0					_		
7					0	100 2	0 300	400	500	600		
8	Center-of-	Gravity Cool	dinates			1					_	
9					-		-	_	-		_	
0			$\sum x_i W_i$	$\sum_{i=1}^{N}$	-		-					-
2		X =	4.	$y = \frac{\pi}{\pi}$	-		-					-
3			$\frac{\sum_{i=1}^{n} x_i W_i}{\sum_{i=1}^{n} W_i},$	Σ^1	-	-						-
-				1-1		-	-	_				

Supplement 7-396

Load-Distance Technique

- Compute (Load x Distance) for each site
- Choose site with lowest (Load x Distance)
- Distance can be actual or straight-line

Load-Distance Calculations

$$LD = \sum_{i=1}^{n} I_i d_i$$

where,

LD = load-distance value

 I_i = load expressed as a weight, number of trips or units being shipped from proposed site and location *i*

$$d_i = \sqrt{(x_i - x)^2 + (y_i - y)^2}$$

where,

(x,y) = coordinates of proposed site

 $(x_i, y_i) =$ coordinates of existing facility

Load-Distance: Example

<u>Poten</u>	tial Site	<u>s</u>			<u>Supp</u>	liers	
<u>Site</u>	X	Y		Α	B	С	D
1	360	180	X	200	100	250	500
2	420	450	Υ	200	500	600	300
3	250	400	Wt	75	105	135	60

Compute distance from each site to each supplier

Site 1
$$d_A = \sqrt{(x_A - x_1)^2 + (y_A - y_1)^2} = \sqrt{(200 - 360)^2 + (200 - 180)^2} = 161.2$$

 $d_B = \sqrt{(x_B - x_1)^2 + (y_B - y_1)^2} = \sqrt{(100 - 360)^2 + (500 - 180)^2} = 412.3$
 $d_C = 434.2$ $d_D = 184.4$

Supplement 7-399

Load-Distance: Example (cont.)

- Site 2 $d_A = 333$ $d_B = 323.9$ $d_C = 226.7$ $d_D = 170$
- Site 3 $d_A = 206.2 d_B = 180.3 d_C = 200 d_D = 269.3$

Compute load-distance

$$LD = \sum_{i=1}^{n} I_i d_i$$

Site 1 = (75)(161.2) + (105)(412.3) + (135)(434.2) + (60)(434.4) = 125,063Site 2 = (75)(333) + (105)(323.9) + (135)(226.7) + (60)(170) = 99,789Site 3 = (75)(206.2) + (105)(180.3) + (135)(200) + (60)(269.3) = 77,555** Choose site 3

Supplement 7-400

Load-Distance Technique with Excel and OM Tools

	Eile Edit 1	and there are											
נ	i 🗟 😼	6 Q V	× 🖻 🖻	• 4 =	2 + 124 +	🐁 Σ • 2+	X+ 🛍 4	100%	• 😰 🚬 Arial		- 10	• B /	<u>∏</u> ≣ ∄
3	ta ta 🖂 🛙	0 10 2	1 图 @ **	Reply with	changes E	ind Review							
	B42	, fs											
	A	B	C	D	E	F	G	н		J	К	L	M
r	Load-Dist					ent - Examp		10.6			K		
-	LUdu-Dist	ancere	cinique		1	and the second se							
2					Input th				tination and site.				
3	Input:					Entert	r the destination weights.						_
1				at		-							_
5	Map		Destina						Map		Sites	1 2	-
5	Coordinates x	A 200	B 100	C 250	D 500				Coordinates	1 360	2 420	3	-
3	x v	200	500	600	300	1			x v	180	420	400	-
3	Weight	75	105	135	60	-				100	400	400	-
0	Weight	10	100	100	00	-			-				
	Calculations												
2					1								
3	Site 1 Dis	stances	Site 2 Dis	tances	Site 3 I	Distances							
4	A	161.25	A	333.02	A	206.16							
5	В	412.31	В	323.88	В	180.28							
6	С	434.17	С	226.72	C	200.00							_
7	D	184.39	D	170.00	D	269.26							_
8			-										_
9													-
	Load-Distan				-								-
2		in the second					Man		and Destinatio				
3	LD =	$\sum_{i=1}^{n} l_i d$	N.,				wap (JI SILes	and Destinatio	115			
4	10000	i-1	1		700								
5		1 - 1	$(y_i - x)^2 + (y_i - x)^2$	2	700 T						2		
6		$a_i = \sqrt{\lambda}$	$y = x_1 + (y_1)$	- 91	600 +						-		
7					500 -	•					÷.		
8	Output:				400 -						- De	stinations	
9	LD (Site		125,061.8		300 -						- sit	es	
0	LD (Site		99,790.5		200				-		-		
1	LD (Site	3) =	77,546.3		1212/21								
2					100								
3					0+								
1.0					0	100	200	300	400 50	0 6	00		
4					0	100	200	300	400 50	0 0	00		-

Supplement 7-401

Chapter 8

Human Resources

Operations Management

Roberta Russell & Bernard W. Taylor, III

Lecture Outline

- Human Resources and Quality Management
- Changing Nature of Human Resources Management
- Contemporary Trends in Human Resources Management
- Employee Compensation
- Managing Diversity in Workplace
- Job Design
- Job Analysis
- Learning Curves

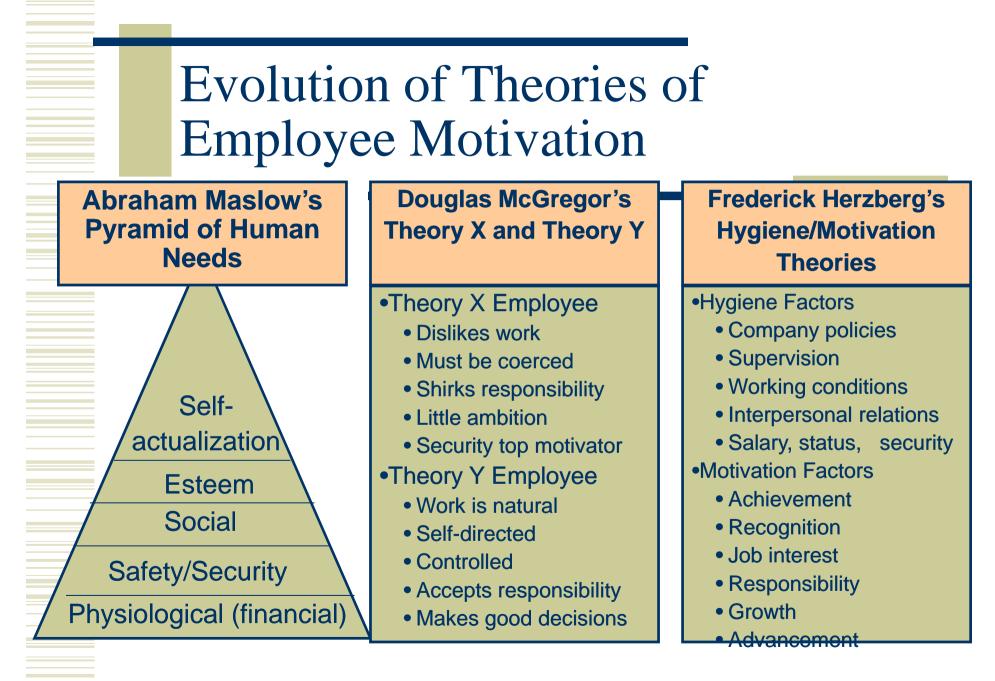
Human Resources and Quality Management

- Employees play important role in quality management
- Malcolm Baldrige National Quality Award winners have a pervasive human resource focus
- Employee training and education are recognized as necessary long-term investments

- Employees have power to make decisions that will improve quality and customer service
- Strategic goals for quality and customer satisfaction require teamwork and group participation

Changing Nature of Human Resources Management

- Scientific management
 - Breaking down jobs into elemental activities and simplifying job design
 - Jobs
 - Comprise a set of tasks, elements, and job motions (basic physical movements)
- In a piece-rate wage system, pay is based on output


- Assembly-line
 - Production meshed with principles of scientific management
- Advantages of task specialization
 - High output, low costs, and minimal training
- Disadvantages of task specialization
 - Boredom, lack of motivation, and physical and mental fatigue

Employee Motivation

Motivation

- willingness to work hard because that effort satisfies an employee need
- Improving Motivation
 - positive reinforcement and feedback
 - effective organization and discipline
 - fair treatment of peoplesatisfaction of employee needssetting of work-related goals

- Improving Motivation (cont.)
 - design of jobs to fit employee
 - work responsibility
 - empowerment
 - restructuring of jobs when necessary
 - rewards based on company as well as individual performance
 - achievement of company goals

Contemporary Trends in Human Resources Management

- Job training
 - extensive and varied
 - two of Deming's 14 points refer to employee education and training
- Cross Training
 - an employee learns more than one job
- Job rotation
 - horizontal movement between two or more jobs according to a plan

- Empowerment
 - giving employees authority to make decisions
- Teams
 - group of employees work on problems in their immediate work area

Contemporary Trends in Human Resources Management (cont.)

- Job enrichment
 - vertical enlargement
 - allows employees control over their work
 - horizontal enlargement
 - an employee is assigned a complete unit of work with defined start and end

Flexible time

 part of a daily work schedule in which employees can choose time of arrival and departure

- Alternative workplace
 - nontraditional work location
- Telecommuting
 - employees work electronically from a location they choose
- Temporary and part-time employees
 - mostly in fast-food and restaurant chains, retail companies, package delivery services, and financial firms

Employee Compensation

Types of pay

- hourly wage
 - the longer someone works, the more s/he is paid
- individual incentive or piece rate
 - employees are paid for the number of units they produce during the workday
- straight salary
 - common form of payment for management
- commissions
 - usually applied to sales and salespeople

Employee Compensation (cont.)

Gainsharing

- an incentive plan joins employees in a common effort to achieve company goals in which they share in the gains
- Profit sharing
 - sets aside a portion of profits for employees at year's end

Managing Diversity in Workplace

- Workforce has become more diverse
 - 4 out of every 10 people entering workforce during the decade from 1998 to 2008 will be members of minority groups
 - In 2000 U.S. Census showed that some minorities, primarily Hispanic and Asian, are becoming majorities
- Companies must develop a strategic approach to managing diversity

Affirmative Actions vs. Managing Diversity

- Affirmative action
 - an outgrowth of laws and regulations
 - government initiated and mandated
 - contains goals and timetables designed to increase level of participation by women and minorities to attain parity levels in a company's workforce
 - not directly concerned with increasing company success or increasing profits

- Managing diversity
 - process of creating a work environment in which all employees can contribute to their full potential in order to achieve a company's goals
 - voluntary in nature, not mandated
 - seeks to improve internal communications and interpersonal relationships, resolve conflict, and increase product quality, productivity, and efficiency

Diversity Management Programs

- Education
- Awareness
- Communication
- Fairness
- Commitment

Global Diversity Issues

- Cultural, language, geography
 - significant barriers to managing a globally diverse workforce
- E-mails, faxes, Internet, phones, air travel
 - make managing a global workforce possible but not necessarily effective
- How to deal with diversity?
 - identify critical cultural elements
 - learn informal rules of communication
 - use a third party who is better able to bridge cultural gap
 - become culturally aware and learn foreign language
 - teach employees cultural norm of organization

Attributes of Good Job Design

- An appropriate degree of repetitiveness
- An appropriate degree of attention and mental absorption
- Some employee responsibility for decisions and discretion
- Employee control over their own job

- Goals and achievement feedback
- A perceived contribution to a useful product or service
- Opportunities for personal relationships and friendships
- Some influence over the way work is carried out in groups
- Use of skills

Factors in Job Design

- Task analysis
 - how tasks fit together to form a job
- Worker analysis
 - determining worker capabilities and responsibilities for a job
- Environment analysis
 - physical characteristics and location of a job
- Ergonomics

- fitting task to person in a work environment
- Technology and automation
 - broadened scope of job design

Elements of Job Design

Task Analysis	Worker Analysis	Environmental Analysis
Description of tasks to be performed	 Capability requirements 	Workplace location
Task sequence	Performance requirements	 Process location
Function of tasks	Evaluation	Temperature and humidity
 Frequency of tasks 	Skill level	Lighting
Criticality of tasks	Job training	Ventilation
 Relationship with other jobs/tasks 	 Physical requirements 	Safety
Performance requirements	Mental stress	Logistics
 Information requirements 	Boredom	Space requirements
Control requirements	Motivation	Noise
Error possibilities	Number of workers	Vibration
Task duration(s)	Level of responsibility	
 Equipment requirements 	 Monitoring level 	
	 Quality responsibility 	
	Empowerment level	

Job Analysis

- Method Analysis (work methods)
 - Study methods used in the work included in the job to see how it should be done
 - Primary tools are a variety of charts that illustrate in different ways how a job or work process is done

Process Flowchart Symbols

Operation:

An activity directly contributing to product or service

Transportation:

Moving the product or service from one location to another

Inspection:

Examining the product or service for completeness, irregularities, or quality

Delay:

Process having to wait

Storage:

Store of the product or service

Process Flowchart

Process Flowchart					
Job <u>Copying Job</u> Date		0/14			_
Analy	st _0	Calvi	n		_
Page	_1				_
Process Description	P	roce	ss Sy	mbo	ols
Desk operator fills out work order	0	R		D	∇
Work order placed in "waiting job" box	0	₽			∇
Job picked up by operator and read	0	₽		D	∇
Job carried to appropriate copy machine	0	■		D	∇
Operator waits for machine to vacate	0	₽			∇
Operator loads paper	ø	ES		D	∇
Operator sets machine	•	₽		D	∇
Operator performs and completes job		4		D	∇
Operator inspects job for irregularities	0	4		D	∇
Job filed alphabetically in completed work shelves	0	K		D	∇
Job waits for pickup	0	₽			∇
Job moved by cashier for pickup	0	×		D	∇
Cashier completes transaction	Ø	₽		D	∇
Cashier packages job (bag, wrap, or box)		₽		D	∇
	0	₽		D	∇
	0	₽		D	∇

	Job	Photo-Id Cards		Date 10/14
	Time		Time	
	(min)	Operator	(min)	Photo Machine
Worker-	- 1 - 2	Key in customer data on card	2.6	Idle
		Feed data card in	0.4	Accept card
Machine Chart	- 3	Position customer for photo	1.0	Idle
		Take picture	0.6	Begin photo process
	= 4 - - 5 - 6	Idle	3.4	Photo/card processed
	-7	Inspect card & trim edges	1.2	Idle
	- 8			

- 9

8-422

Worker-Machine Chart: Summary

Summary									
	Operator Time	%	Photo Machine Time	%					
Work	5.8	63	4.8	52					
Idle	3.4	37	4.4	48					
Total	9.2 min	100%	9.2 Min	100%					

Motion Study

- Used to ensure efficiency of motion in a job
- Frank & Lillian Gilbreth
- Find one "best way" to do task
- Use videotape to study motions

General Guidelines for Motion Study

- Efficient Use Of Human Body
 - Work

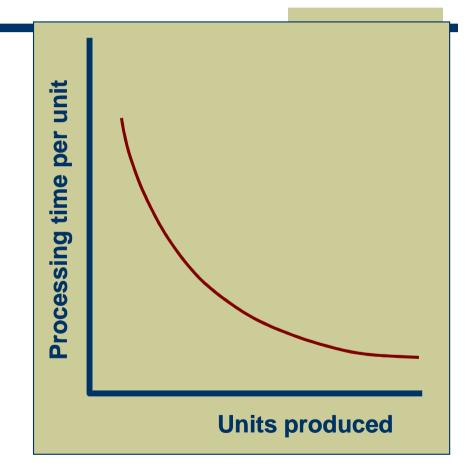
simplified, rhythmic and symmetric

- Hand/arm motions
 - coordinated and simultaneous
- Employ full extent of physical capabilities
- Conserve energy
 - •use machines, minimize distances, use momentum
- Tasks

simple, minimal eye contact and muscular effort, no unnecessary motions, delays or idleness

General Guidelines for Motion Study

Efficient Arrangement of Workplace


- Tools, material, equipment designated, easily accessible location
- Comfortable and healthy seating and work area

Efficient Use of Equipment

- Equipment and mechanized tools enhance worker abilities
- Use foot-operated equipment to relieve hand/arm stress
- Construct and arrange equipment to fit worker use

Learning Curves

- Illustrates improvement rate of workers as a job is repeated
- Processing time per unit decreases by a constant percentage each time output doubles

Learning Curves (cont.)

Time required for the n^{th} unit =

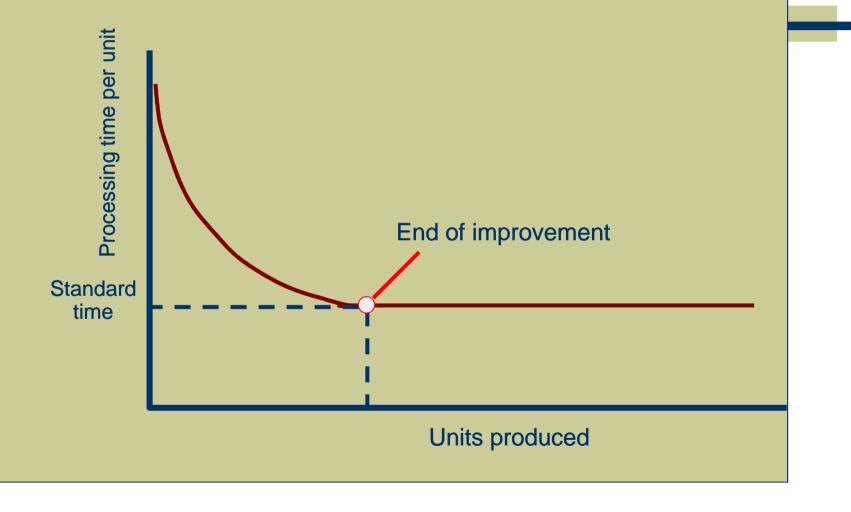
$$t_n = t_1 n^b$$

where:

- t_n = time required for n^{th} unit produced
- t_1 = time required for first unit produced
- n = cumulative number of units produced
- $b = \ln r$ where *r* is the learning curve percentage
 - In 2 (decimal coefficient)

Learning Curve Effect

Contract to produce 36 computers. $t_1 = 18$ hours, learning rate = 80% What is time for 9th, 18th, 36th units?


$$t_9 = (18)(9)^{\ln(0.8)/\ln 2} = (18)(9)^{-0.322}$$

 $= (18)/(9)^{0.322} = (18)(0.493) = 8.874$ hrs

 $t_{18} = (18)(18)^{\ln(0.8)/\ln 2} = (18)(0.394) = 7.092$ hrs

 $t_{36} = (18)(36)^{\ln(0.8)/\ln 2} = (18)(0.315) = 5.674$ hrs

Learning Curve for Mass Production Job

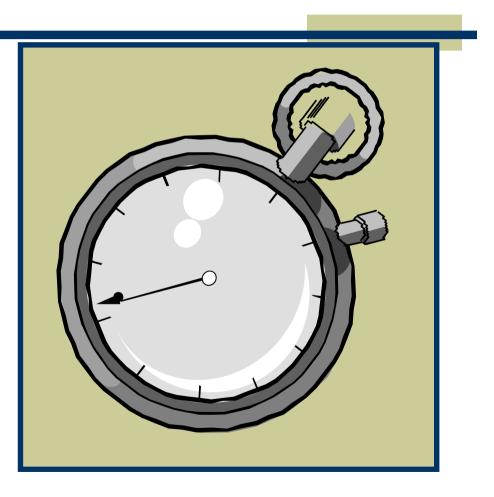
Learning Curves (cont.)

- Advantages
 - planning labor
 - planning budget
 - determining scheduling requirements

- Limitations
 - product modifications negate learning curve effect
 - improvement can derive from sources besides learning
 - industry-derived learning curve rates may be inappropriate

Chapter 8 Supplement

Work Measurement


Operations Management

Roberta Russell & Bernard W. Taylor, III

Lecture Outline

Time StudiesWork Sampling

Work Measurement

- Determining how long it takes to do a job
- Growing importance in service sector
 - Services tend to be labor-intensive
 - Service jobs are often repetitive
- Time studies
 - Standard time
 - is time required by an average worker to perform a job once
 - Incentive piece-rate wage system based on time study

Stopwatch Time Study Basic Steps

- 1. Establish standard job method
- 2. Break down job into elements
- 3. Study job
- 4. Rate worker's performance (RF)
- 5. Compute average time (t)

Stopwatch Time Study Basic Steps (cont.)

6. Compute normal time

Normal Time = (Elemental average) x (rating factor)

 $\mathsf{N}t = (\overline{t})(RF)$

Normal Cycle Time = $NT = \Sigma Nt$

7. Compute standard time

Standard Time = (normal cycle time) x (1 + allowance factor)

ST = (NT)(1 + AF)

Supplement 8-436

Performing a Time Study

Time Study Observation Sheet																
lo	Identification of operation Sandwich Assembly										Date 5/17					
			Operator Approval Smith Jones							Observer Russell						
			Cycles									Summary				
			1	2	3	4	5	6	7	8	9	10	Σt	Ŧ	RF	Nt
1	Grasp and lay out bread slices	t	.04	.05	.05	.04	.06	.05	.06	.06	07	.05	.53	.053	1.05	.056
		R	.04	.38	.72	1.05	1.40	1.76	2.13	2.50	2.89	3.29				
 2	Spread mayonnaise	t	.07	.06	.07	.08	.07	.07	.08	.10	.09	.08	.77	.077	1.00	.077
	on both slices	R	.11	.44	.79	1.13	1.47	1.83	2.21	2.60	2.98	3.37				
 3	³ Place ham, cheese, and lettuce on bread	t	.12	.11	.14	.12	.13	.13	.13	.12	.14	.14	1.28	1.28	1.10	.141
		R	.23	.55	.93	1_25	1.60	1.96	2.34	2.72	3.12	3.51				
 4	Place top on sandwich,	t	.10	.12	.08	.09	.11	.11	.10	.10	.12	.10	1.03	1.03	1.10	.113
 -	Slice, and stack	R	.33	.67	1.01	1.34	1.71	2.07	2.44	2.82	3.24	3.61				

Performing a Time Study (cont.)

Average element time = $\overline{t} = \frac{\Sigma t}{10} = \frac{0.53}{10} = 0.053$

Normal time = (Elemental average)(rating factor) Nt = (t)(RF) = (0.053)(1.05) = 0.056

Normal Cycle Time = $NT = \Sigma Nt = 0.387$

ST = (NT) (1 + AF) = (0.387)(1+0.15) = 0.445 min

Performing a Time Study (cont.)

How many sandwiches can be made in 2 hours?

120 min 0.445 *min/sandwich* = 269.7 or 270 sandwiches

Supplement 8-439

Number of Cycles

To determine sample size:

$$n = \left(\frac{zs}{eT}\right)^2$$

where

z = number of standard deviations from the mean in a normal distribution reflecting a level of statistical confidence

$$S = \sqrt{\frac{\sum (x_i - \overline{x})^2}{n - 1}}$$

- = sample standard deviation from sample time study
- \overline{T} = average job cycle time from the sample time study
- *e* = degree of error from true mean of distribution

Number of Cycles: Example

- Average cycle time = 0.361
- Computed standard deviation = 0.03
- Company wants to be 95% confident that computed time is within 5% of true average time

$$n = \left(\frac{zs}{eT}\right)^2 \left(\frac{(1.96)(0.03)}{(0.05)(0.361)}\right)^2 61 \text{ or } 11$$

Supplement 8-441

Number of Cycles: Example (cont.)

	hicrosoft Excel - ExhibitS8.2.xls											_	_							JEI
	Eile Edit View Insert Format																		for help	- 8
1	≤ .	B - 0	10 - 0	10	Σ · 4 Z	1 101 2	100%	. 2.	Arial		- 10 -	BI	UEEE	B \$ %	0 .00	唐 建 H	· 3 · /	A + _		
																		-		
4	ta ta 21 Ta 42 🖸 🔁 😥			IS EDG R	eview															
_	B27 ▼ fx =(B26*B2					_														
	A	В	С	D	E	F	G	Н		J	ĸ	L	M	N	0	Р	Q	R	S	1
7000	Stopwatch Time Study				OM Stude	nt - Exan	ple S8.	1and S8.	3											-
2									_											
3	Input:						(In	nut work e	lements e	lement tin	es ratino									
	No. of work elements	4		Precisi		0.05														
5	No. of cycles	10			ence level	0.95		factors, an allowance factor, and other mo parameters . Excei will calculate normal ti			ne]							
5	Allowance factor	0.15	<u> </u>	Standa	rd deviation	0.03	st	andard tim	e. and san	nole size.			Calculations:							-
7							-													
3													Average	Normal	Standard					
3						ement Cy						Rating	element	element	element					
0	Work Element	1	2	3	4	5	6	7	8	9	10	Factor	time	time	time					-
1	Grasp and lay out bread slices	0.04	0.05	0.05	0.04	0.06	0.05	0.06	0.06	0.07	0.05	1.05	0.053	0.056	0.064	-			-	-
2	Spread mayonnaise	0.07	0.06	0.07	0.08	0.07	0.07	0.08	0.1	0.09	0.08	1.00	0.077	0.077	0.089				-	
3	Place ham, cheese and lettuce	0.12	0.11	0.14	0.12	0.13	0.13	0.13	0.12	0.14	0.14	1.10	0.128	0.141	0.162		()			-
4	Place top, slice and stack	0.10	0.12	0.08	0.09	0.11	0.11	0.10	0.10	0.12	0.10	1.10	0.103	0.113	0.130					_
5						_		7		-		-	0.000	0.000	0.000					-
6	S		<u>i</u>				2	4	-		-	-	0.000	0.000	0.000					
7	S	_					-		-		· · · · · · · · · · · · · · · · · · ·		0.000	0.000	0.000					-
8	-						-	-			-		0.000	0.000	0.000	_				-
		_					7	-					0.000	0.000						
0		100					-	-					0.000	0.000	0.000					-
1	Output:			-					-				0.301	0.38/	0.445					
2	Normal cycle time	0.3	97	-		Normal E	lamont	Timo	$Nt = (\overline{t})$	(DE)										-
4	Standard job time	0.3		-		nonna) E	ententa	a inne	NI - (1)	(RF)										-
4	Standard Job time Standard deviation	0.4				Normal C	Violo Ti		NT = Nt		-	-			-					-
6	Z-value	1.9				nonnarc	yce n	ne	141 - 141											
7	Sample size	1.9				Standard	Loh Ti		ST - AL	T)(1 + AF)									-	-
8	Sample size	10.0	512	8		Stanuard	100 Th	ne	31 - (N	INT + MP)	-									-
9						Time Stu	why Com	nla Siza	1 75	12										-
0		-		1		Time St	wy Sall	pia 2128	$n = \left(\frac{zs}{eT}\right)$	1		-								-
1				-				-	Ver	1										-

Developing Time Standards without a Time Study

- Elemental standard time files
 - predetermined job element times
- Predetermined motion times
 - predetermined times for basic micro-motions
- Time measurement units
 - TMUs = 0.0006 minute
 - 100,000 TMU = 1 hour

- Advantages
 - worker cooperation unnecessary
 - workplace uninterrupted
 - performance ratings unnecessary
 - consistent
- Disadvantages
 - ignores job context
 - may not reflect skills and abilities of local workers

MTM Table for MOVE

т	IME (TM	IU) WEIG	GHT ALI	OWANCE			
DISTANCE MOVED				Hand in motion	Weight (lb)	Dynamic	Static constant
-(INCHES) 3/4 or less	2.0	<u> </u>	<u> </u>	<u>B</u>	up to:	factor	<u> </u>
1	2.5	2.9	3.4	2.3	2.5	1.00	0
2	3.6	4.6	5.2	2.9			
3	4.9	5.7	6.7	3.6	7.5	1.06	2.2
4	6.1	6.9	8.0	4.3			
20	19.2	18.2	22.1	15.6	37.5	1.39	12.5

A. Move object to other hand or against stop

B. Move object to approximate or indefinite location

C. Move object to exact location

Source: MTM Association for Standards and Research.

Supplement 8-444

Work Sampling

- Determines the proportion of time a worker spends on activities
- Primary uses of work sampling are to determine
 - ratio delay
 - percentage of time a worker or machine is delayed or idle
 - analyze jobs that have non-repetitive tasks
- Cheaper, easier approach to work measurement

Steps of Work Sampling

1. Define job activities

2. Determine number of observations in work sample

$$n = \left(\frac{z}{e}\right)^2 (1 - p)$$

where

- *n* = sample size (number of sample observations)
- *z* = number of standard deviations from mean for desired level of confidence
- e = degree of allowable error in sample estimate
- p = proportion of time spent on a work activity estimated
 prior to calculating work sample

Steps of Work Sampling (cont.)

- 3. Determine length of sampling period
- 4. Conduct work sampling study; record observations
- 5. Periodically re-compute number of observations

Work Sampling: Example

What percent of time is spent looking up information? Current estimate is p = 30%Estimate within +/- 2%, with 95% confidence

$$n = \left(\frac{z}{e}\right)^2 p(1-p) = \left(\frac{1.96}{0.02}\right)^2 (0.3)(0.7) = 2016.84 \text{ or } 2017$$

After 280 observations, p = 38%

$$n = \left(\frac{z}{e}\right)^2 p(1-p) = \left(\frac{1.96}{0.02}\right)^2 (0.38)(0.62) = 2263$$

Supplement 8-448

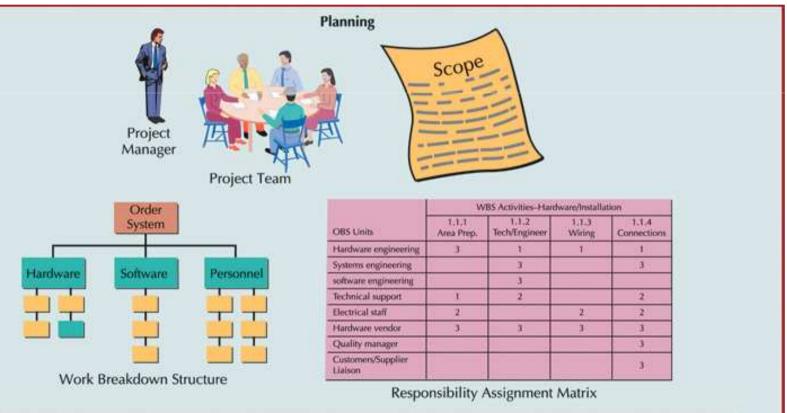
	A	B	C	D	E	F	G	Н		J	K	L	
	Work S	ampling			OM Student - Ex	cample S8.	4						
	NEWSTREET.		20	-	01		A 1.0					_	
100	Input:	No. of resources	28	-	Observation	No. Idle	% Idle				a deima a		
Contraction of the local distribution of the		No. of observations Precision	0.02	-	2	1	0.00			rces, no. of)	
11		Confidence level	0.02	2	4	-	0.00			served idle	, and the required.		
		Confidence level	0.33					precis	ion and co	indence lev	ei i edmi er		
3								Excel	will calcula	te the avera	nge percent		
	Output:	p-bar	0.3800	-					und the san		.ye per com		
D	Supin	Z-value	1.96									1	
1		Sample size	2263					-		-		-	
2													
3													
4			10										
5		Work Sampling Sar	nple Size										
6		1.5.5											
7		$n = \left(\frac{z}{e}\right)^2 \overline{p} \left(1 - \overline{p}\right)$	5										
8		(e) P 1 F											
n													
9													

Chapter 9

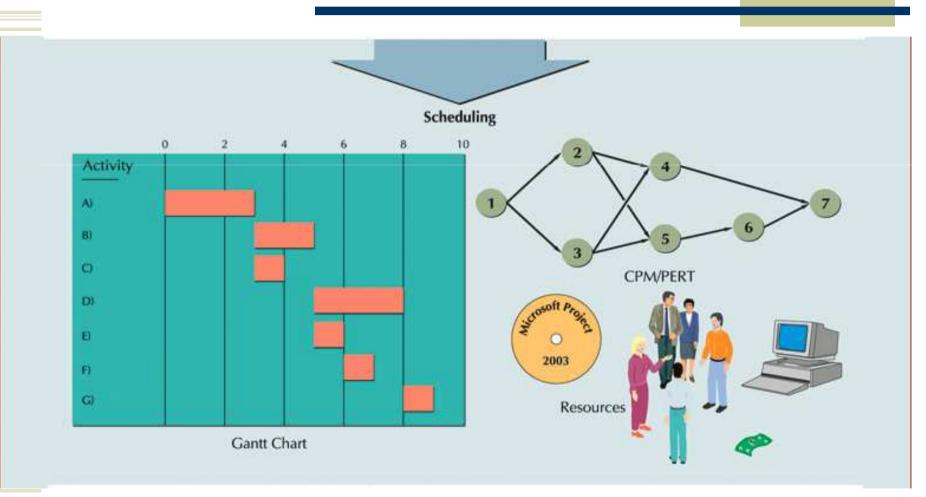
Project Management

Operations Management

Roberta Russell & Bernard W. Taylor, III

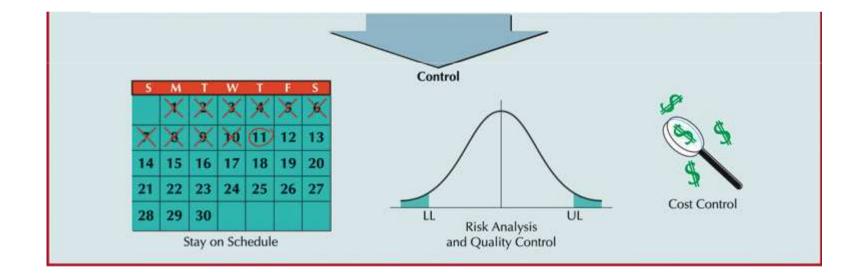

Lecture Outline

- Project Planning
- Project Scheduling
- Project Control
- CPM/PERT
- Probabilistic Activity Times
- Microsoft Project
- Project Crashing and Time-Cost Trade-off


Project Management Process

Project

unique, one-time operational activity or effort

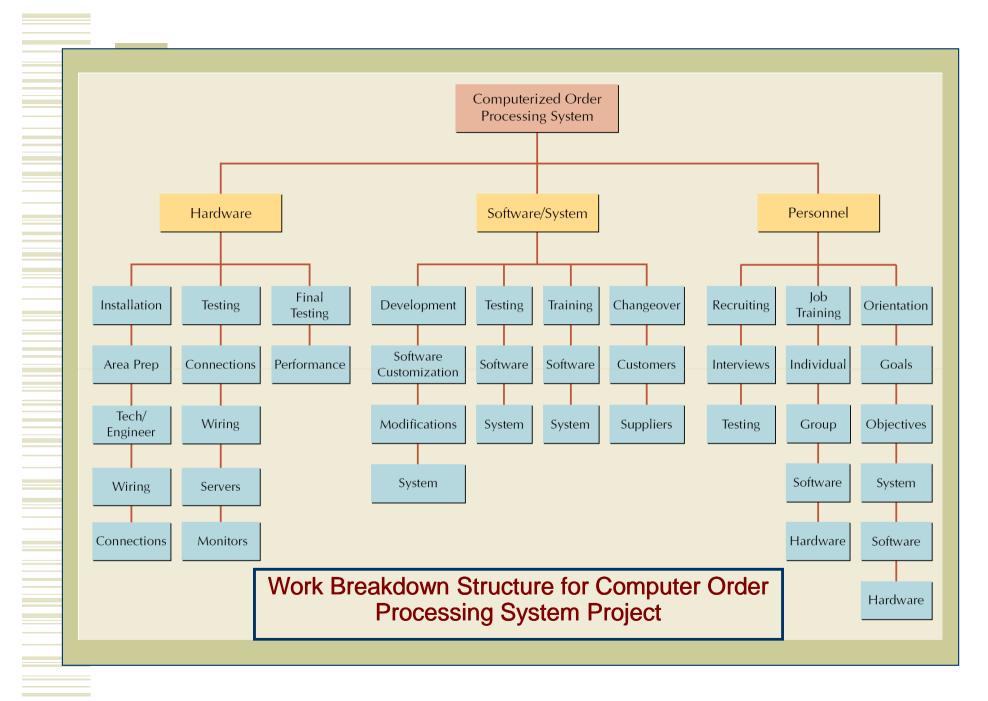


Project Management Process (cont.)

9-453

Project Management Process (cont.)

Project Elements


- Objective
- Scope
- Contract requirements
- Schedules
- Resources
- Personnel
- Control
- Risk and problem analysis

Project Team and Project Manager

- Project team
 - made up of individuals from various areas and departments within a company
- Matrix organization
 - a team structure with members from functional areas, depending on skills required
- Project manager
 - most important member of project team

Scope Statement and Work Breakdown Structure

- Scope statement
 - a document that provides an understanding, justification, and expected result of a project
- Statement of work
 - written description of objectives of a project
- Work breakdown structure (WBS)
 - breaks down a project into components, subcomponents, activities, and tasks

Responsibility Assignment Matrix

	WBS Activities-Hardware/Installation									
OBS Units	1.1.1 Area Prep	1.1.2 Tech/Engineer	1.1.3 Wiring	1.1.4 Connections						
Hardware engineering	3	1	1	1						
Systems engineering		3		3						
Software engineering		3								
Technical support	1	2		2						
Electrical staff	2		2	2						
Hardware vendor	3	3	3	3						
Quality manager				3						
Customer/supplier liaison				3						

Level of responsibility: 1 = overall responsibility

2 = performance responsibility

3 = support

 Organizational Breakdown Structure (OBS)

> a chart that shows which organizational units are responsible for work items

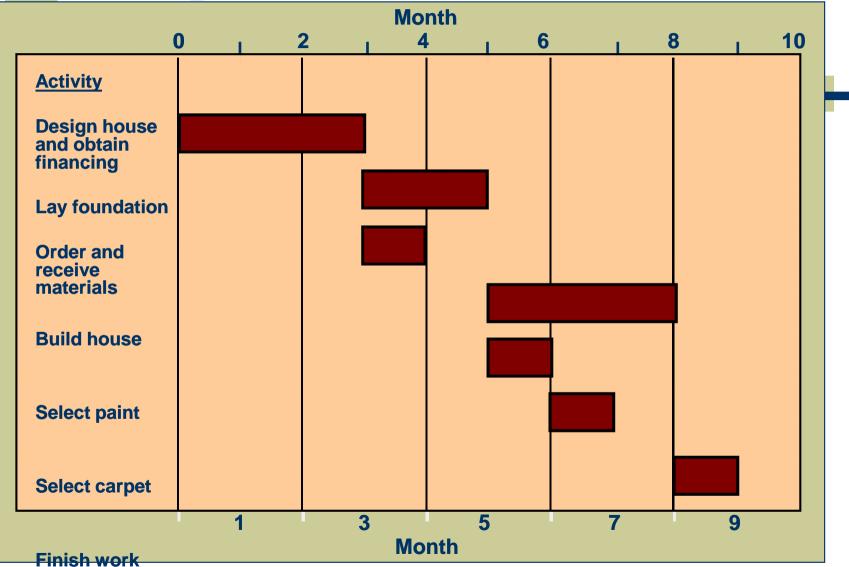
 Responsibility Assignment Matrix (RAM)

> shows who is responsible for work in a project

Global and Diversity Issues in Project Management

- In existing global business environment, project teams are formed from different genders, cultures, ethnicities, etc.
- In global projects diversity among team members can add an extra dimension to project planning
- Cultural research and communication are important elements in planning process

Project Scheduling


- Steps
 - Define activities
 - Sequence activities
 - Estimate time
 - Develop schedule

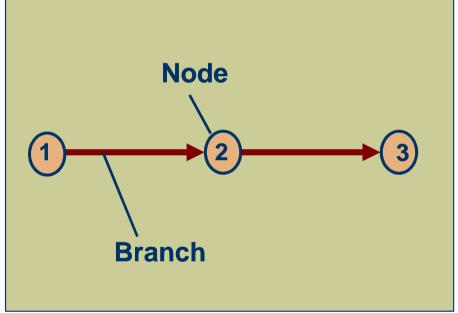
- Techniques
 - Gantt chart
 - CPM/PERT
 - Microsoft Project

Gantt Chart

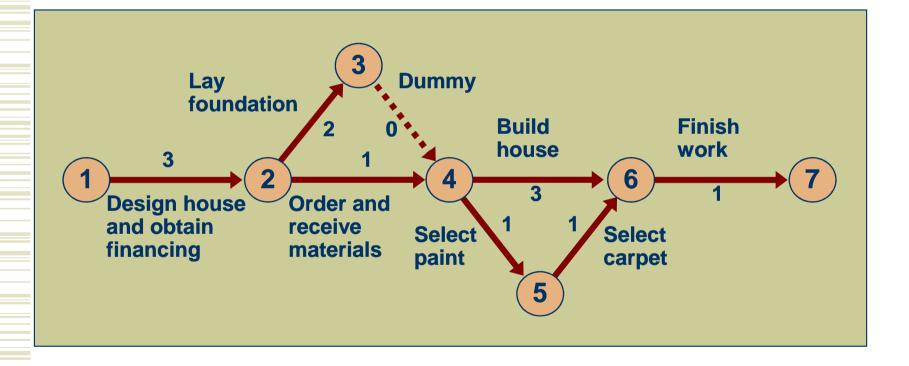
- Graph or bar chart with a bar for each project activity that shows passage of time
- Provides visual display of project schedule
- Slack
 - amount of time an activity can be delayed without delaying the project

Example of Gantt Chart

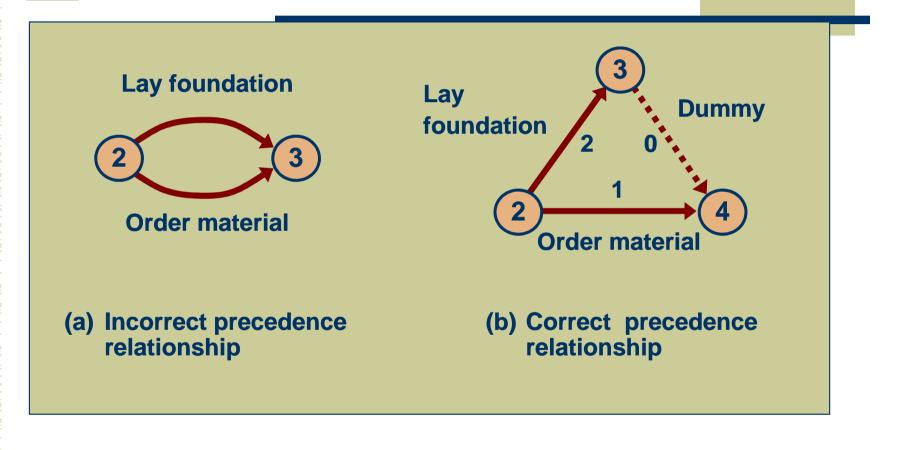
Project Control

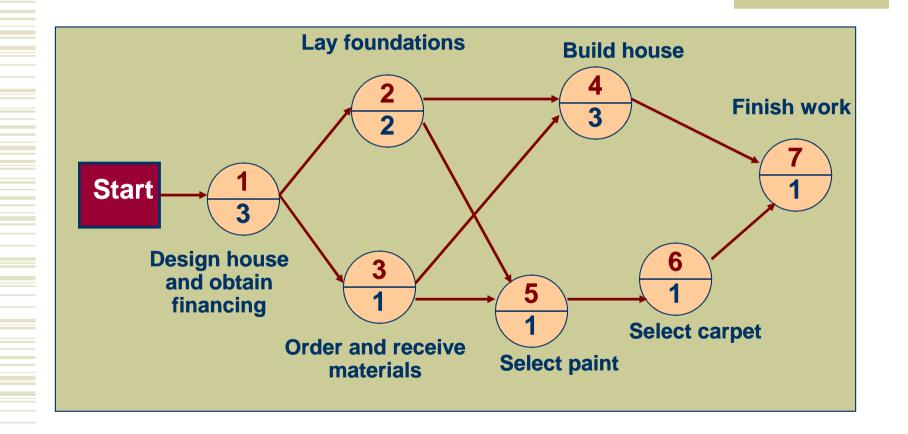

- Time management
- Cost management
- Quality management
- Performance management
 - Earned Value Analysis
 - a standard procedure for numerically measuring a project's progress, forecasting its completion date and cost and measuring schedule and budget variation
- Communication
- Enterprise project management

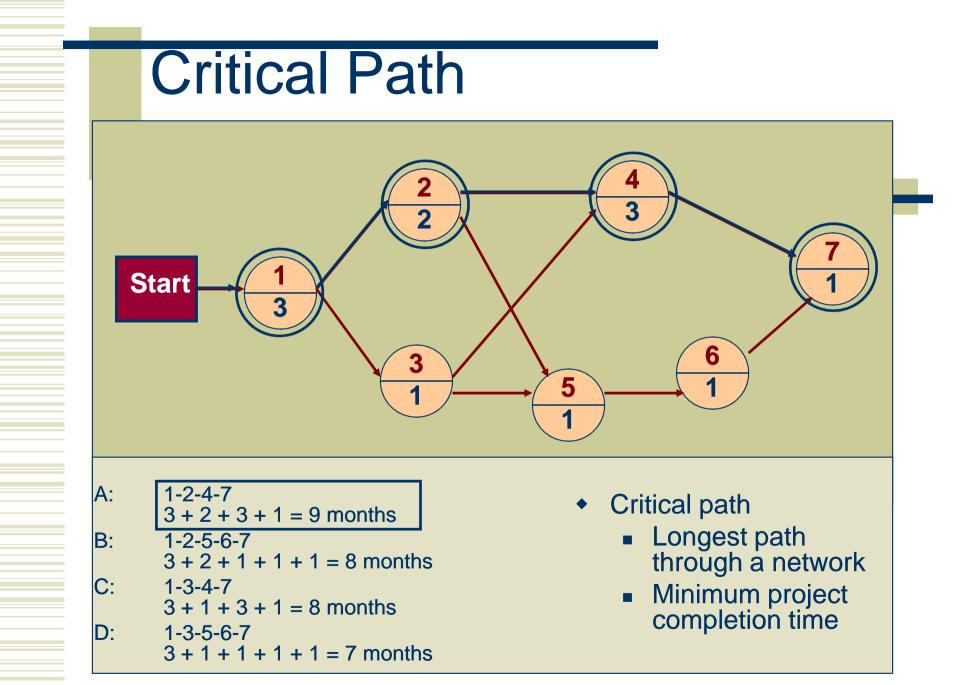
CPM/PERT


- Critical Path Method (CPM)
 - DuPont & Remington-Rand (1956)
 - Deterministic task times
 - Activity-on-node network construction
- Project Evaluation and Review Technique (PERT)
 - US Navy, Booz, Allen & Hamilton
 - Multiple task time estimates; probabilistic
 - Activity-on-arrow network construction

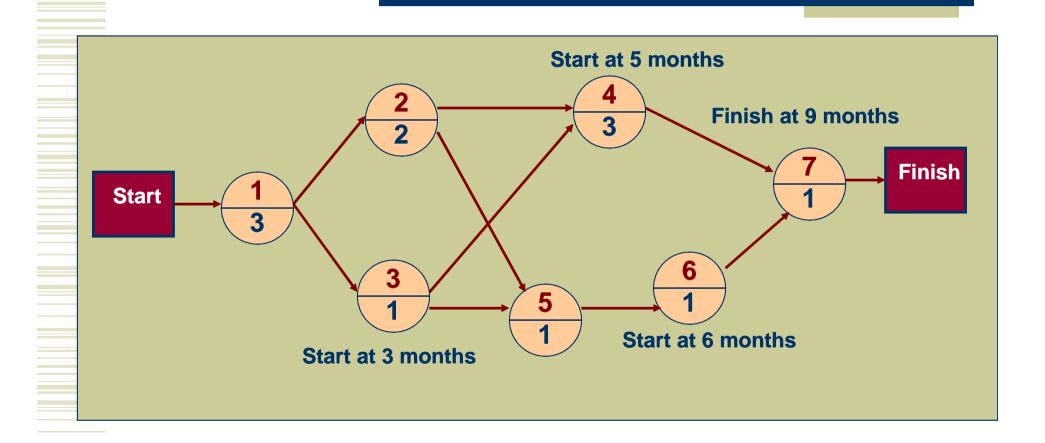
Project Network

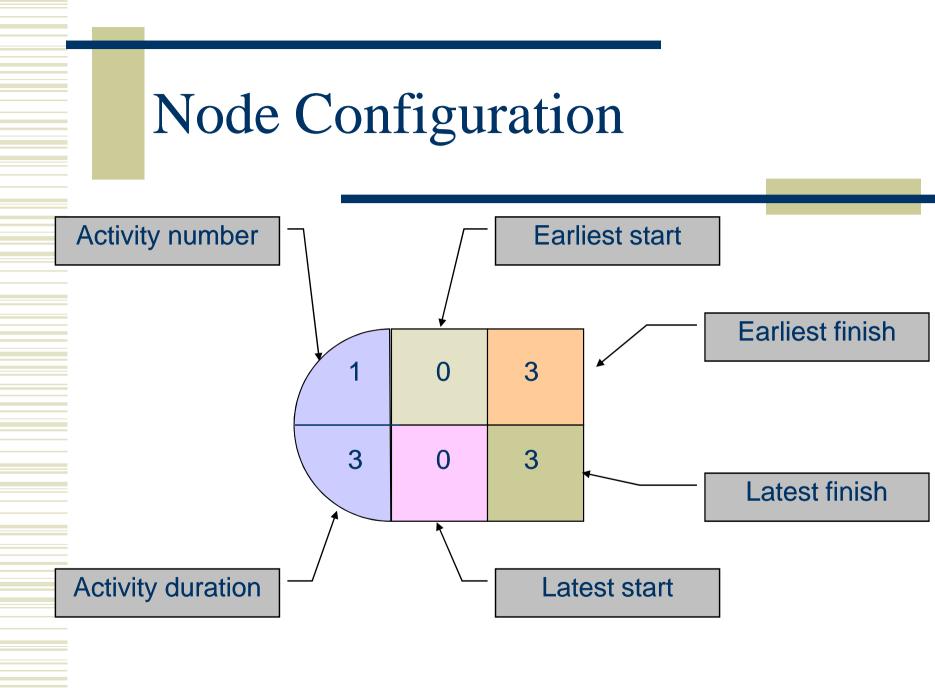

- Activity-on-node (AON)
 - nodes represent activities, and arrows show precedence relationships
- Activity-on-arrow (AOA)
 - arrows represent activities and nodes are events for points in time
- Event
 - completion or beginning of an activity in a project
- Dummy
 - two or more activities cannot share same start and end nodes


AOA Project Network for a House

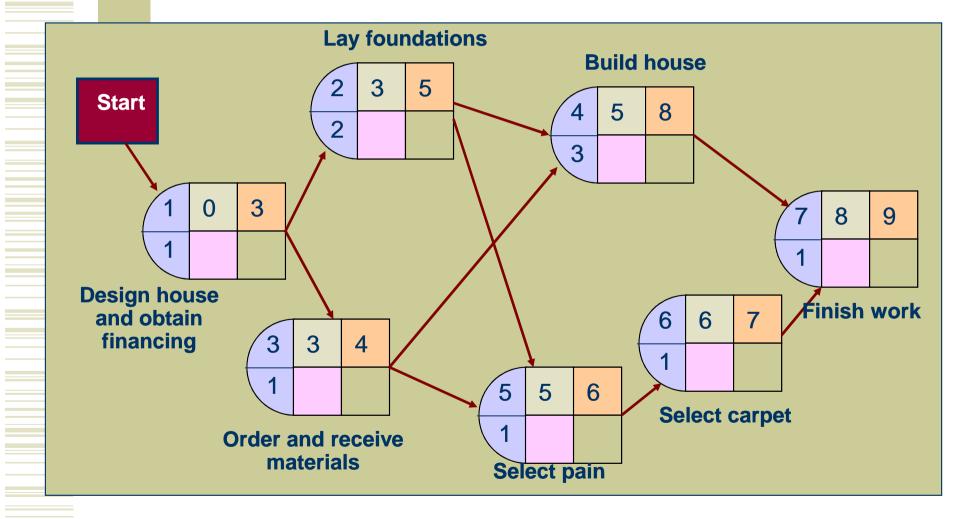


Concurrent Activities




AON Network for House Building Project

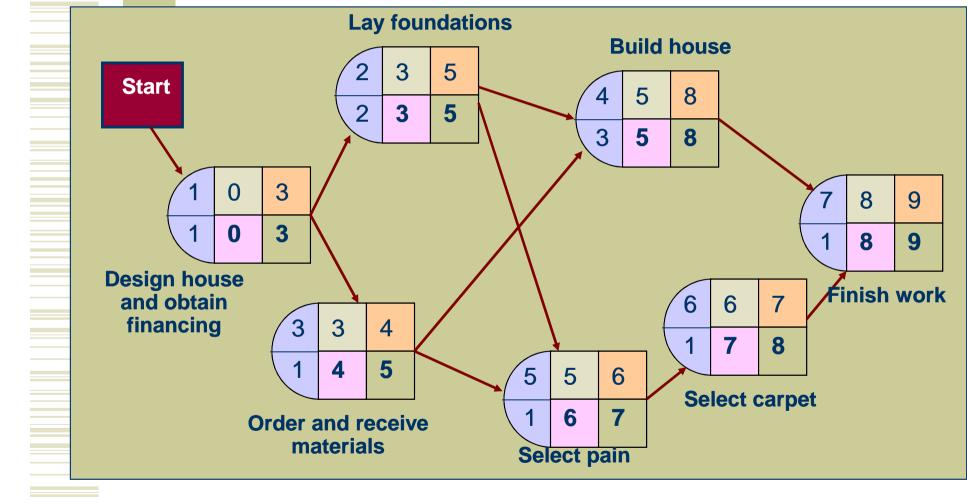
Activity Start Times



Activity Scheduling

- Earliest start time (ES)
 - earliest time an activity can start
 - ES = maximum EF of immediate predecessors
- Forward pass
 - starts at beginning of CPM/PERT network to determine earliest activity times
- Earliest finish time (EF)
 - earliest time an activity can finish
 - earliest start time plus activity time
 - EF= ES + *t*

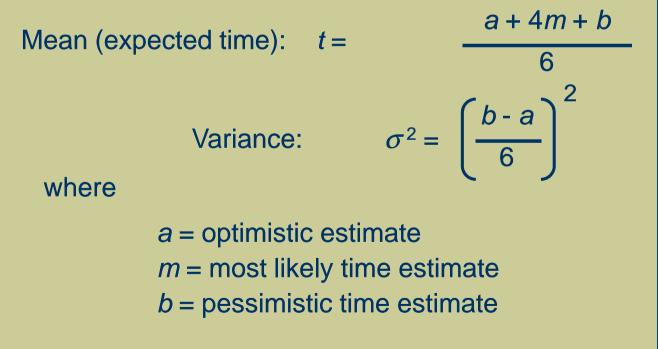
Earliest Activity Start and Finish Times



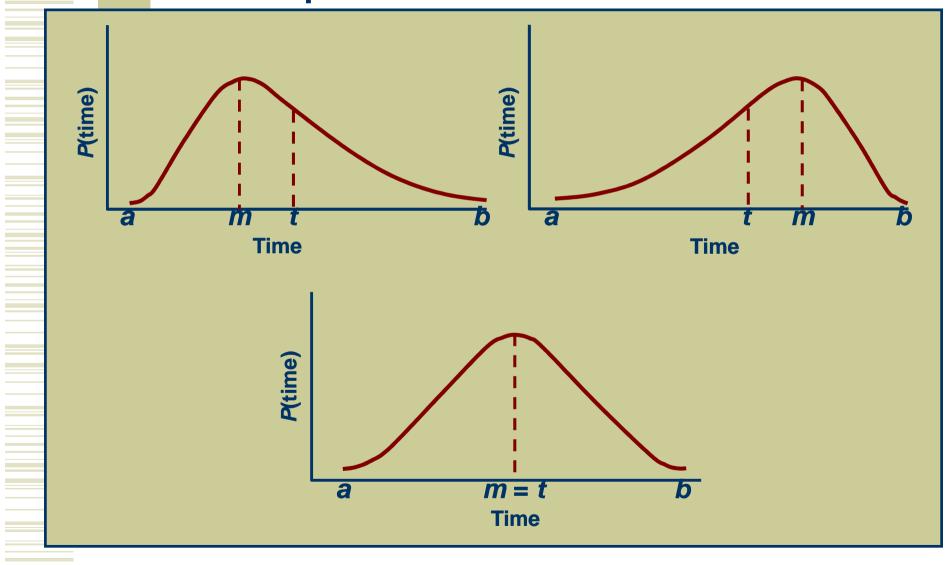
Activity Scheduling (cont.)

- Latest start time (LS)
 - Latest time an activity can start without delaying critical path time
 - LS= LF *t*
- Latest finish time (LF)
 - latest time an activity can be completed without delaying critical path time
 - LF = minimum LS of immediate predecessors
- Backward pass
 - Determines latest activity times by starting at the end of CPM/PERT network and working forward

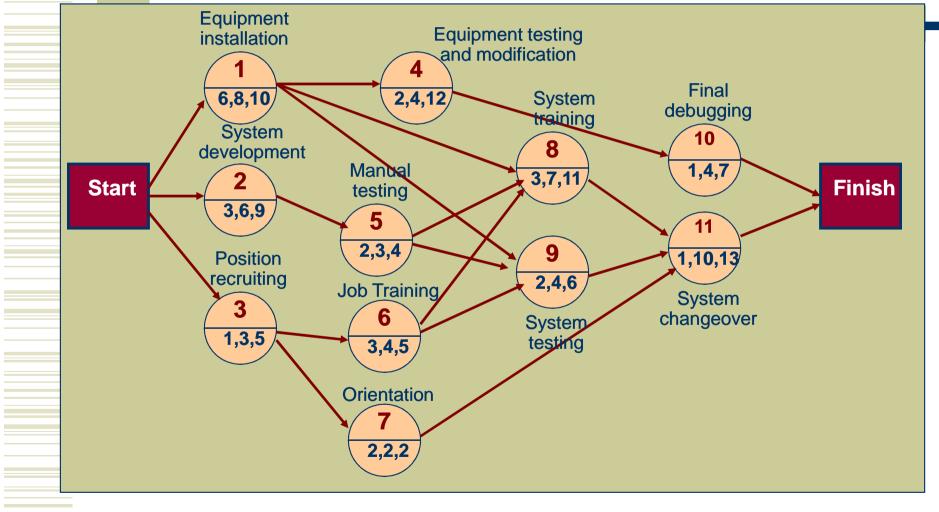
Latest Activity Start and Finish Times


Activity Slack

Activity	LS	ES	LF	EF	Slack S
*1	0	0	3	3	0
*2	3	3	5	5	0
3	4	3	5	4	1
*4	5	5	8	8	0
5	6	5	7	6	1
6	7	6	8	7	1
*7	8	8	9	9	0
* Critical F	Path				

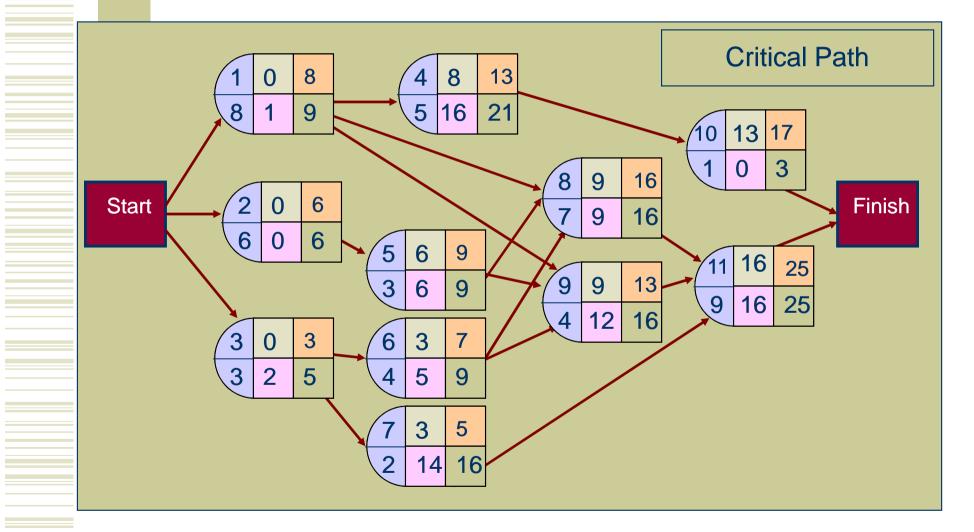

Probabilistic Time Estimates

Beta distribution


 a probability distribution traditionally used in CPM/PERT

Examples of Beta Distributions

Project Network with Probabilistic Time Estimates: Example


Activity Time Estimates

	ТІМЕ	ESTIMATES	(WKS)	MEAN TIME	VARIANCE	
ACTIVITY	а	т	b	t	<mark>ნ</mark> ²	
1	6	8	10	8	0.44	
2	3	6	9	6	1.00	
3	1	3	5	3	0.44	
4	2	4	12	5	2.78	
5	2	3	4	3	0.11	
6	3	4	5	4	0.11	
7	2	2	2	2	0.00	
8	3	7	11	7	1.78	
9	2	4	6	4	0.44	
10	1	4	7	4	1.00	
11	1	10	13	9	4.00	

Activity Early, Late Times, and Slack

ACTIVITY	t	6 ²	ES	EF	LS	LF	S
1	8	0.44	0	8	1	9	1
2	6	1.00	0	6	0	6	0
3	3	0.44	0	3	2	5	2
4	5	2.78	8	13	16	21	8
5	3	0.11	6	9	6	9	0
6	4	0.11	3	7	5	9	2
7	2	0.00	3	5	14	16	11
8	7	1.78	9	16	9	16	0
9	4	0.44	9	13	12	16	3
10	4	1.00	13	17	21	25	8
11	9	4.00	16	25	16	25	0

Earliest, Latest, and Slack

Total project variance

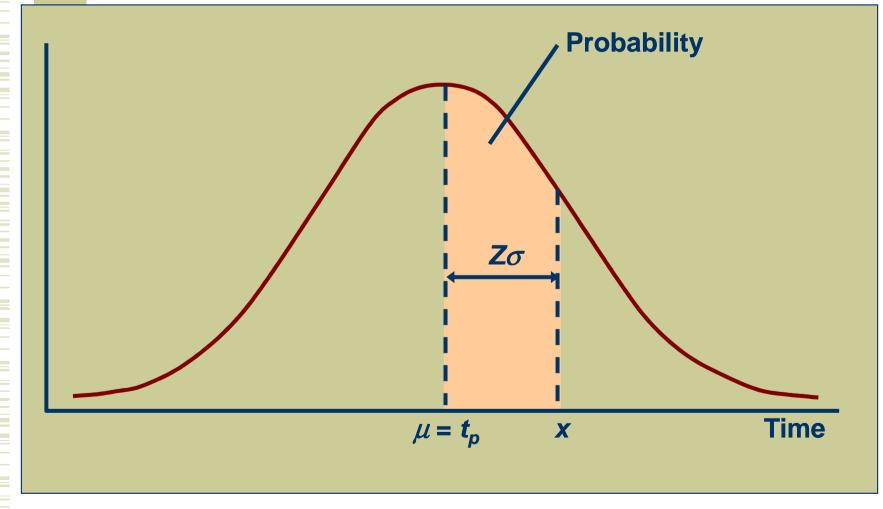
$$\sigma^2 = \sigma_2^2 + \sigma_5^2 + \sigma_8^2 + \sigma_{11}^2$$

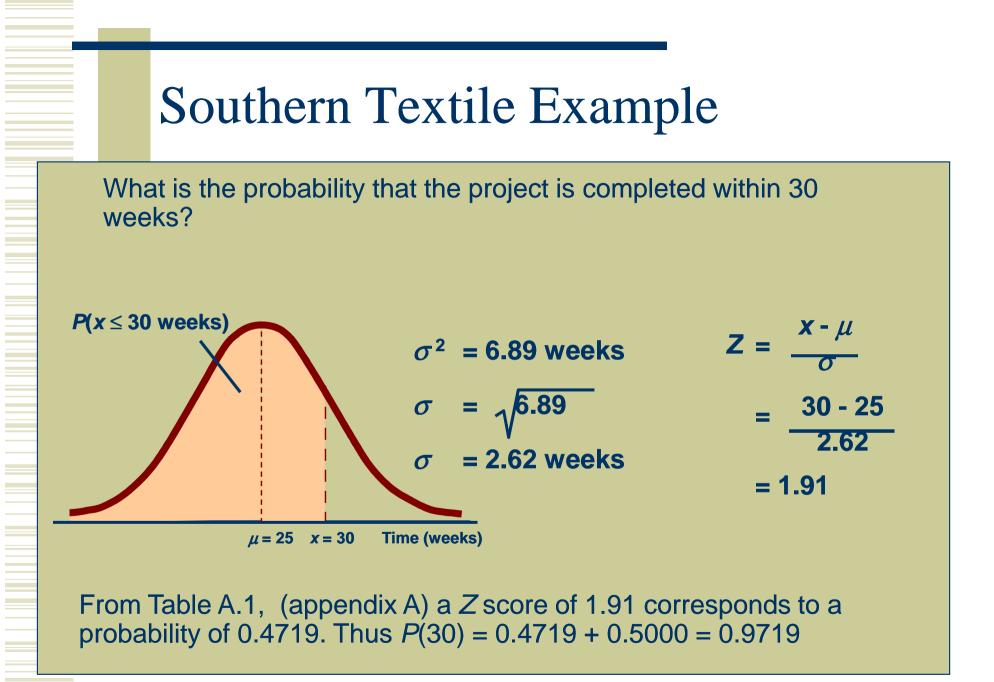
σ = **1.00 + 0.11 + 1.78 + 4.00**

= 6.89 weeks

1	Eile Edit	<u>View</u> Insert	Format Tools	Data OM To	ols <u>W</u> indow	Help									Type a question	on for help 📃 💌	- 6
0	2 🖬 🧌	8 6 G V	X 🖻 🛍 •	0 0.0	- 😩 E - 1	1 X1 10 48	90% - 🐙	Arial	- 10	• B I 1		图 \$ %	, *.8 .08 E	「 住 田・	8 . A .		
		a 10 10 10				10,000 10000 00											
-0	154	• fx		tell i mar Frankler													
	A	B	C	D	E	F	G	н	1	J	К	L	M	N	0	Р	
1	or a set of the second second	Management	101		OM Student - E	xample 9.1											
2 3	nput		Input act	ivities, time esti	mates and activ	ity predecessors itical path on th											
4	_	-	Les_e	Time antimates		-	Coloulations							-			-
	Activity	Label		Time estimates Most Likely		Mean	Calculations Std dev	Variance		-							-
7	1	Equip. install.	6.00	8.00	10.00	8.00	0.67	0.44							1		
8	2	System dev.	3.00	6.00	9.00	6.00	1.00	1.00									
9	3	Position recruit.	1.00	3.00	5.00	3.00	0.67	0.44									
10	4	Equip. testing Manual testing	2.00	4.00 3.00	12.00	5.00	1.67	2.78									-
12	6	Job training	3.00	4.00	5.00	4.00	0.33	0.11									-
13	7	Orientation	2.00	2.00	2.00	2.00	0.00	0.00									
4	8	System training	3.00	7.00	11.00	7.00	1.33	1.78								1	
15	9	System testing	2.00	4.00	6.00	4.00	0.67	0.44									-
16	10	Final debugging Bystem Change.	1.00	4.00	7.00	4.00 9.00	1.00	1.00								()	-
8	- 11	pystern change.	1.00	10.00	13.00	3.00	2.00	4.00									-
	Activity	Time	Ac	tivity Predeces	sor					1				1			
20	1	8.00			1	Find Cm	ical Path	Gantt Chart									
21	2	6.00 3.00								Critical Path							-
23	4	5.00	1			- "I		Real Property lies	0	-							-
24	5	3.00	2			9				-						1	
25	6	4.00	3	6		1 1	-										
26	7	2.00	3			F7 -											_
27	8	7.00	2	5	6	35				-							-
29	10	4.00	4	*	0	H ~ ' +		3		-							
30	11	9.00	8	9	7	3											
81																	
2	Dutput:																-
4	aqua.				1	0.00	5.00 10.0	0 Time	20.00 25.0	0 30.00		2		-			-
	Project S	chedule				-											-
	744.5 70	101 - 17 - 172 - 17 - 17 - 17 - 17 - 17 -	an an Angeleran	10 0 0120 m	water and the second	2004-00-00-00-00-00-00-00-00-00-00-00-00-	Critical Path										
16	Task	Earliest Start					Variance										-
17	2	0.000	8.000 6.000	1.000	8.000 6.000	1.000	1.000										-
19	3	0.000	3.000	2.000	5.000	2.000	1.000										
10	4	8.000	13.000	16.000	21.000	8.000											
11	5	6.000	9.000	6.000	9.000	0.000	0.111										
12	6	3.000	7.000	5.000	9.000	2.000											
3	7 8	3.000 9.000	5.000 16.000	14.000 9.000	16.000 16.000	11.000 0.000	1,778										-
15	9	9.000	13.000	12.000	16.000	3.000	1.770	-									-
6	10	13.000	17.000	21.000	25.000	8.000											
7	11	16.000	25.000	16.000	25.000	0.000	4.000	-									
0	Droject C	ompletion Time	25		Project	variance	6.889										

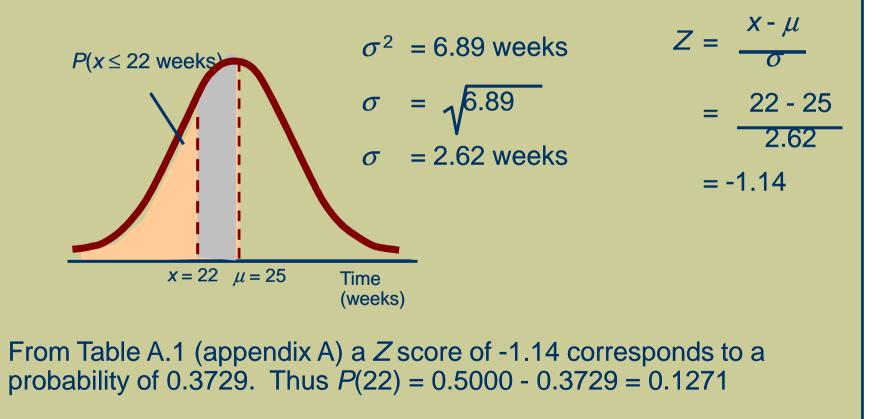
Probabilistic Network Analysis

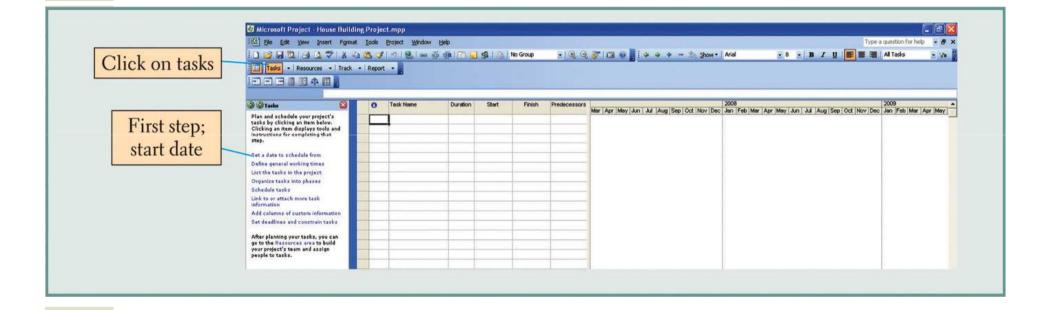

Determine probability that project is completed within specified time

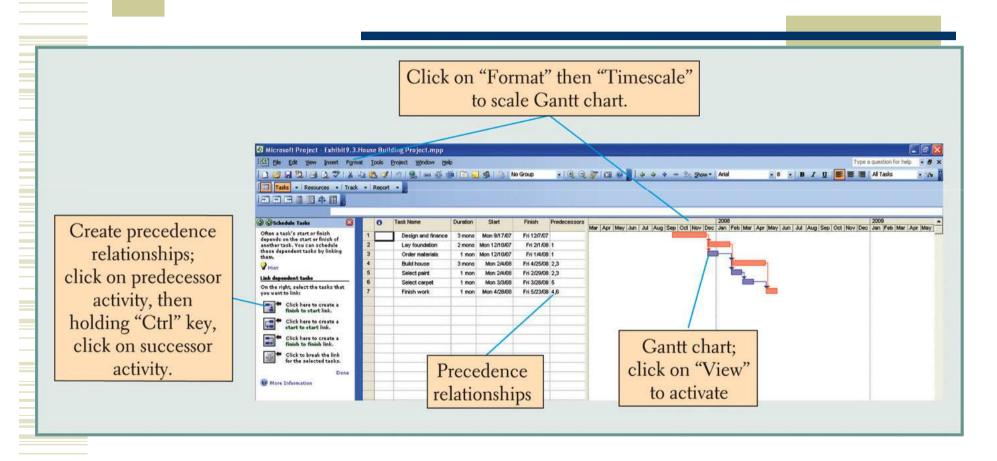

$$Z = \frac{x - \mu}{\sigma}$$

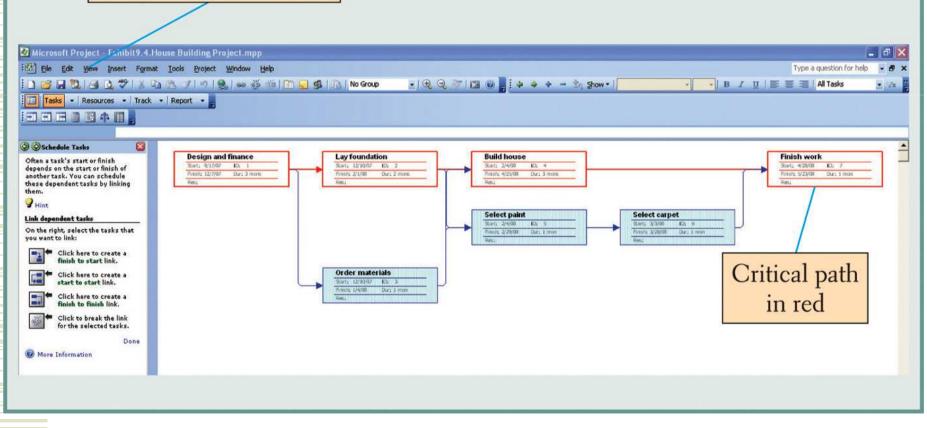
where

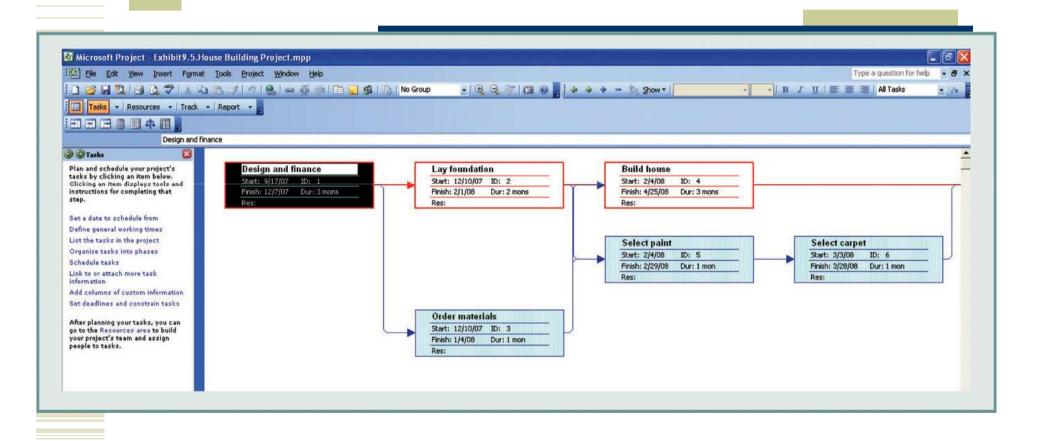
- $\mu = t_p = project mean time$
- σ = project standard deviation
- x = proposed project time
- Z = number of standard deviations x is from mean


Normal Distribution of Project Time


Southern Textile Example


What is the probability that the project is completed within 22 weeks?

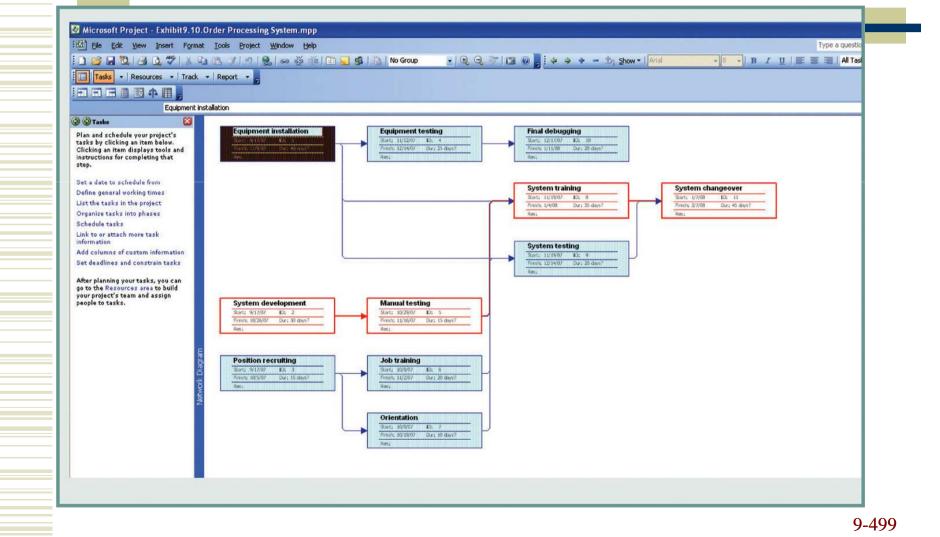

Microsoft Project


- Popular software package for project management and CPM/PERT analysis
- Relatively easy to use

Click on "View" then Network Diagram

	Task Information
	General Predecessors Resources Advanced Notes Custom Fields Name: Design and finance Duration: 3mo T Estimated
	Percent complete: 100% + Priority: 500 +
Enter % completion	Start: Mon 9/17/07 ▼ Einish: Fri 12/7/07 ▼
	☐ Roll up Gantt bar to summary
	Help OK Cancel

Microsoft Project - Exhibit 9.7. Ele Edit Yiew Insert Form Tasks - Resources - Track	at 1	icols L 🍠	Project Window Hel - 기 원, - 호 호 호		3 3 M	o Group	<u>.</u> Q Q	Type a question for help • Type a question for help • Arial • 6 • B Z U = = Al Tasks • •
Tasks		0	Task Name	Duration	Start	Finish	Predecessors	2008 2009
lan and schedule your project's	1	~	Design and finance	3 mons	Mon 9/17/07	Fri 12/7/07	r.	Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr Ma
isks by clicking an item below. licking an item displays tools and	2	~	Lay foundation	2 mons		Fri 2/1/08		
structions for completing that	3	1	Order materials	1 mon		Fri 1/4/08	1	
tep.	4	1	Build house	3 mons	Mon 2/4/08	Fri 4/25/08	2,3	
et a date to schedule from	5	1	Select paint	1 mon	Mon 2/4/08	Fri 2/29/08	2,3	
efine general working times	6		Select carpet	1 mon	Mon 3/3/08	Fri 3/28/08	5	
ist the tasks in the project	7	1	Finish work	1 mon	Mon 4/28/08	Fri 5/23/08	4,6	
rganize tasks into phases								
chedule tasks ink to or attach more task				-				
formation			X	-		_		
dd columns of custom information	-		1					
et deadlines and constrain tasks								
fter planning your tasks, you can						2	10	
o to the Resources area to build			Acti	viti	es l,	/ an	d 3	
our project's team and assign eople to tasks.								
			1(100	com	nlat	0	V
		-	1	10 10	COIL	ipiei		
						÷		D1 1 1 1
								Black bars show
								degree of completion
								degree of completion

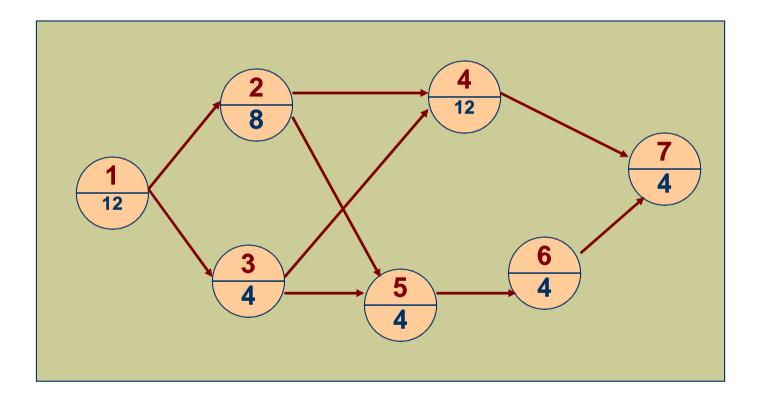

PERT Analysis with Microsoft Project

Click on PERT Entry	Microsoft Project - Exhi			5155 C			_		Type a guestion for h	
Sheet to enter 3 time estimates	Tasks Resources	Track •		Contraction of the local division of the loc	🥵 🖳 No Gro	up 🖭	0.0.712.0	j 🎍 🎍 🔶 — 💲 Show + Arial	rype a queston ren ■ 8 • B I I I E T Al Tasks	2 Va
	@ @ Tasks	8	Tesk Name	Duration	Optimistic Dur.	Expected Dur.	Pessinistic Dur.			
	Plan and schedule your project	1	Equipment installation	40 days?	6 wike	8 wks	and the second se			
	tasks by clicking an item below.	2	System development	30 days?	3 wiks	6 wks	s 9 wks			
	Clicking an item displays tools instructions for completing that	id 3	Position recruiting	15 days?	1 wk	3 wks	5 wks			
	step	4	Equipment testing	25 days?	2 wks	4 wks	s 12 wks			
	Set a date to schedule from	5	Manual testing	15 days?	2 wks	3 wks				
	Define general working times	6	Job training	20 days?	3 wks	4 wks				
	List the tasks in the project	7	Orientation	10 days?	2 wite	2 wks				
Clist on DEDT	Organize tasks into phases Schedule tasks	8	System training	35 days?	3 wks	7 wks	5 25/24/002			
Click on PERT	Link to or attach more task	9	System testing	20 days?	2 wks	4 wiks				
1 1	information		e ande ander ogget og	20 days? 45 days?	1 wk	4 wks 10 wks				
alculator to compute	Add columns of custom information	en in	System changeover	45 days /	1 WK	10 WKS	5 13 WKS			
+	Set deadlines and constrain tas									
activity duration	After planning your tasks, you c									
activity duration	go to the Resources area to buil your project's team and assign									
	people to tasks.									
	1	100								

PERT Analysis with Microsoft Project (cont.)

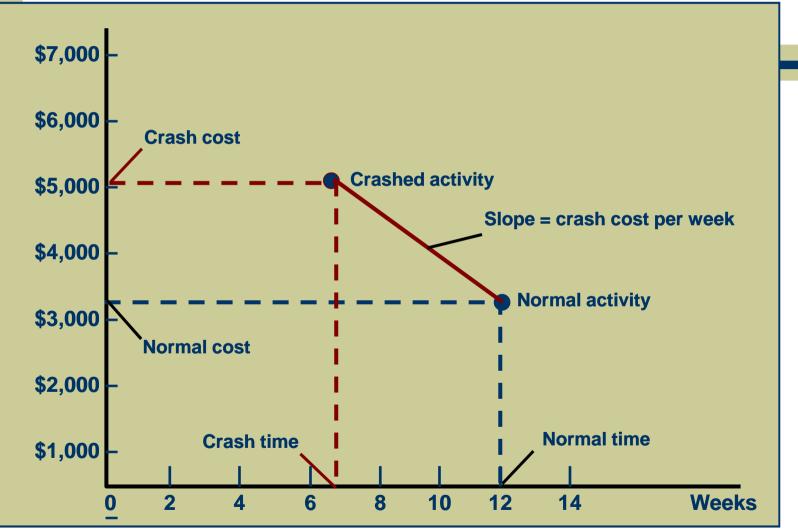
Microsoft Project - Exhibit9.9.	Orde	r Pro	cessing System.mpp						- 6
Bile Edit Yiew Insert Form	nat j	Tools	Project Window Help						a question for help 🛛 🖛 🗗 🗄
0 🧀 🖬 🛍 🖂 🖉 👗	Ca (1.3	ി ി 🎗 🥃 ന് 👬			Group		🏹 🖾 😡 💂 : 🌩 🌩 → 📩 Show - Arial 🛛 🔹 8 - 日 II 🔟 📑 亜 亜	All Tasks 👻 🏹=
		and the second data							
Tasks + Resources + Trad		Report							
Tasks		0	Task Name	Duration	Start	Finish	Predecessors	2006	2009
			Took Hamo	Corobott	Stort	a moort	FIEUCOSSOIS	Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov	
an and schedule your project's sks by clicking an item below.	1		Equipment installation	40 days?	Mon 9/17/07	Fri 11/9/07	7		
licking an item displays tools and	2		System development	30 days?	Mon 9/17/07	Fri 10/26/07	7		
structions for completing that ep.	3		Position recruiting	15 days?	Mon 9/17/07	Fri 10/5/07	7		
New Control of the Co	4		Equipment testing	25 days?	Mon 11/12/07	Fri 12/14/07	7 1	i in the second s	
et a date to schedule from	5		Manual testing	15 days?	Mon 10/29/07	Fri 11/16/07	7 2		
efine general working times	6		Job training	20 days?	Mon 10/8/07	Fri 11/2/07	7 3		
st the tasks in the project	7		Orientation	10 days?	Mon 10/8/07	Fri 10/19/07	7 3		
rganize tasks into phases chedule tasks	8		System training	35 days?	Mon 11/19/07	Fri 1/4/08	3 1,5,6		
nk to or attach more task	9		System testing	20 days?	Mon 11/19/07	Fri 12/14/07	7 1,5,6		
formation	10	3	Final debugging	20 days?	Mon 12/17/07	Fri 1/11/08	3 4	The second se	
dd columns of custom information	11	1	System changeover	45 days?	Mon 1/7/08	Fri 3/7/08	7,8,9		
et deadlines and constrain tasks							1.000		
fter planning your tasks, you can									
to the Resources area to build									
our project's team and assign									
		-					1		
		-							

PERT Analysis with Microsoft Project (cont.)

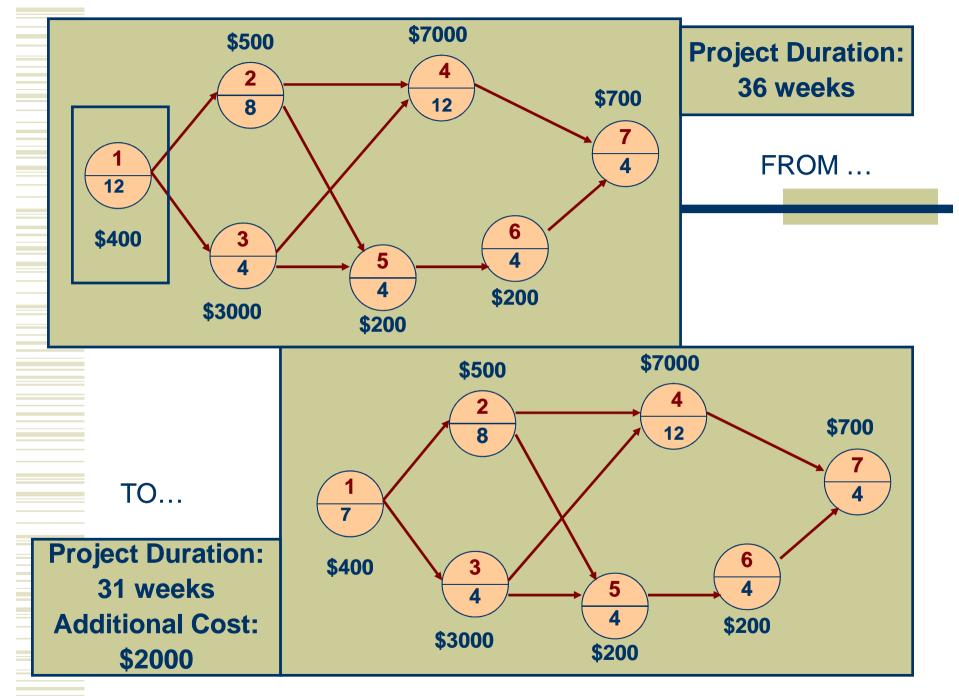

Project Crashing

- Crashing
 - reducing project time by expending additional resources

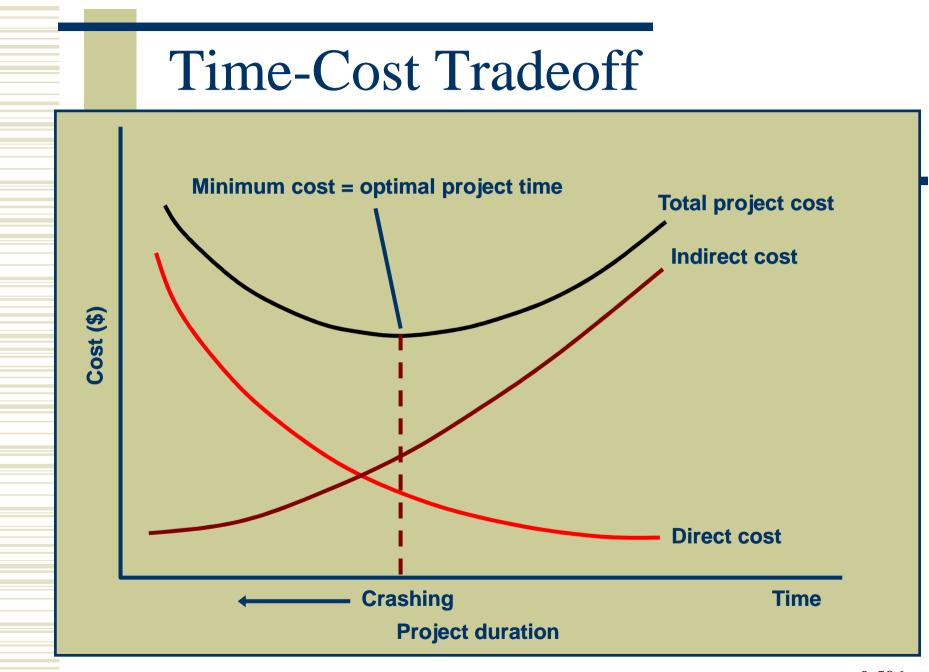
Crash time


- an amount of time an activity is reduced
- Crash cost
 - cost of reducing activity time
- Goal
 - reduce project duration at minimum cost

Project Network for Building a House


9-501

Normal Time and Cost vs. Crash Time and Cost


Project Crashing: Example

ΑCTIVITY	NORMAL TIME (WEEKS)	CRASH TIME (WEEKS)	NORMAL COST	CRASH COST	TOTAL ALLOWABLE CRASH TIME (WEEKS)	CRASH COST PER WEEK
1	12	7	\$3,000	\$5,000	5	\$400
2 3	8	5	2,000	3,500	3	500
	4	3	4,000	7,000	1	3,000
4 5	12	9	50,000	71,000	3	7,000
5	4	1	500	1,100	3	200
6	4	1	500	1,100	3	200
7	4	3	15,000	22,000	1	7,000
			\$75,000	\$110,700		

Time-Cost Relationship

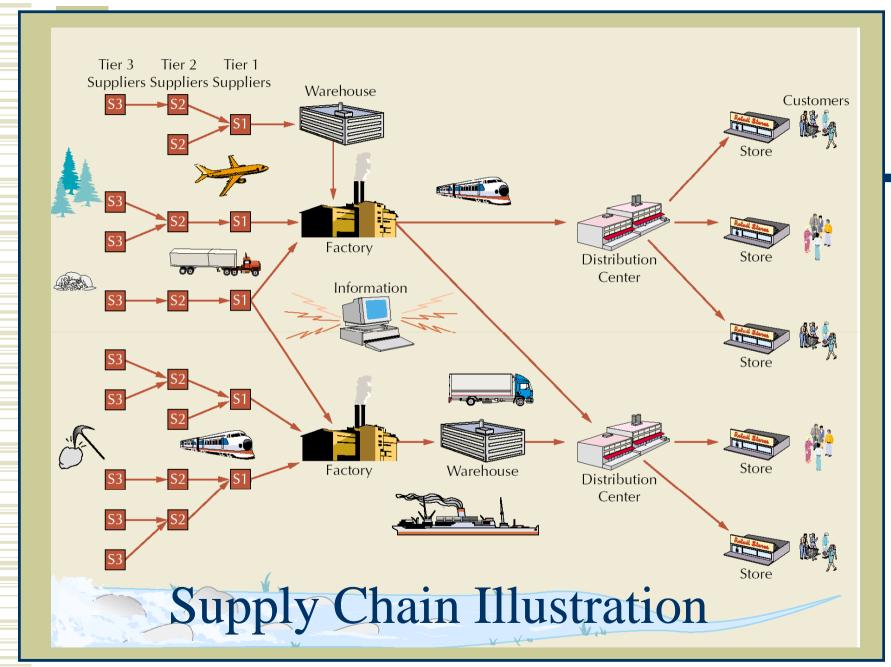
- Crashing costs increase as project duration decreases
- Indirect costs increase as project duration increases
- Reduce project length as long as crashing costs are less than indirect costs

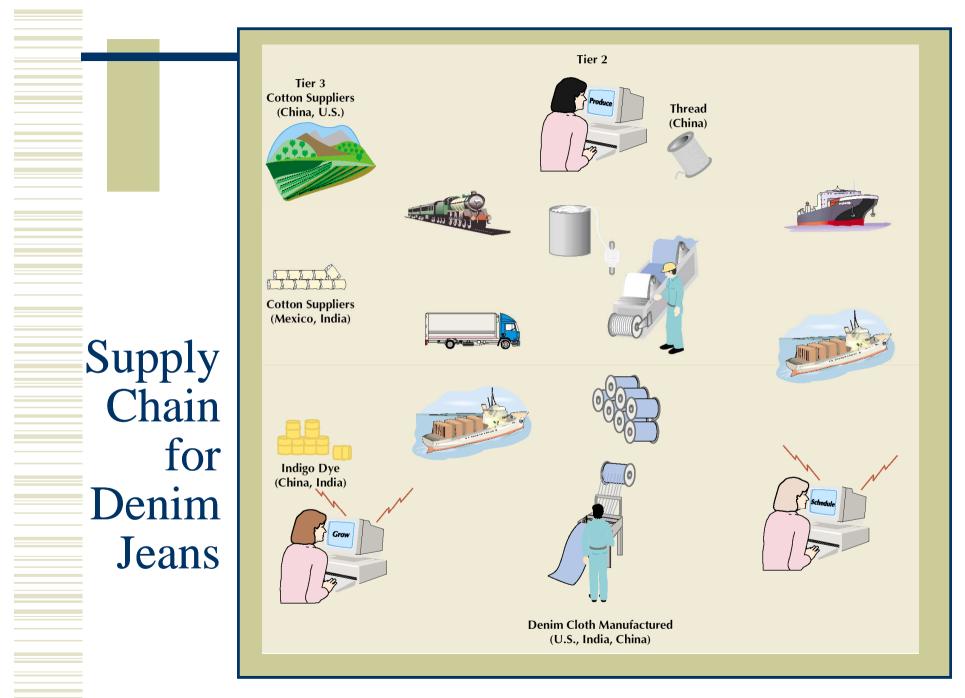
Chapter 10

Supply Chain Management Strategy and Design

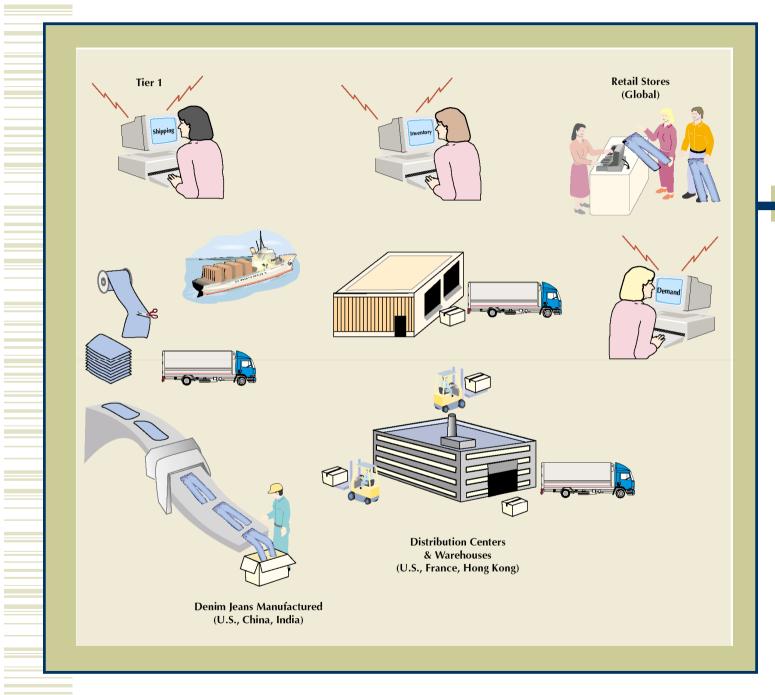
Operations Management

Roberta Russell & Bernard W. Taylor, III


Lecture Outline


- The Management of Supply Chains
- Information Technology: A Supply Chain Enabler
- Supply Chain Integration
- Supply Chain Management (SCM) Software
- Measuring Supply Chain Performance

Supply Chains


All facilities, functions, and activities associated with flow and transformation of goods and services from raw materials to customer, as well as the associated information flows

An integrated group of processes to "source," "make," and "deliver" products

10-511

Supply Chain for Denim Jeans (cont.)

Supply Chain Processes

Supply Chain for Service Providers

- More difficult than manufacturing
- Does not focus on the flow of physical goods
- Focuses on human resources and support services
- More compact and less extended

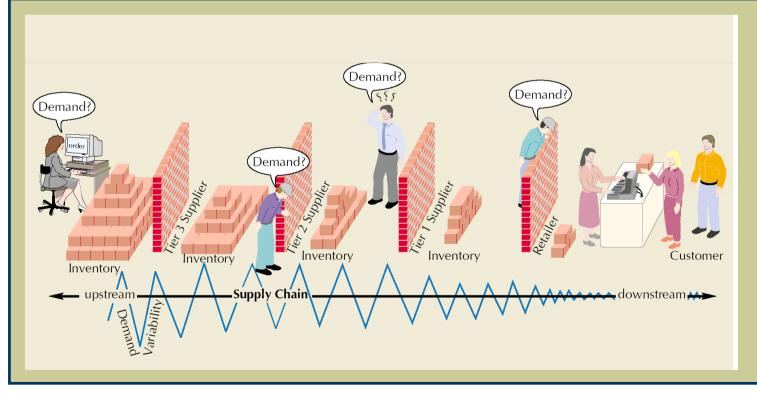
Value Chains

- Value chain
 - every step from raw materials to the eventual end user
 - ultimate goal is delivery of maximum value to the end user
- Supply chain
 - activities that get raw materials and subassemblies into manufacturing operation
 - ultimate goal is same as that of value chain
- Demand chain
 - increase value for any part or all of chain
- Terms are used interchangeably
- Value
 - creation of value for customer is important aspect of supply chain management

Supply Chain Management (SCM)

- Managing flow of information through supply chain in order to attain the level of synchronization that will make it more responsive to customer needs while lowering costs
- Keys to effective SCM
 - information
 - communication
 - cooperation
 - trust

Supply Chain Uncertainty and Inventory


One goal in SCM:

- respond to uncertainty in customer demand without creating costly excess inventory
- Negative effects of uncertainty
 - Iateness
 - incomplete orders
- Inventory
 - insurance against supply chain uncertainty

- Factors that contribute to uncertainty
 - inaccurate demand forecasting
 - long variable lead times
 - late deliveries
 - incomplete shipments
 - product changes
 - batch ordering
 - price fluctuations and discounts
 - inflated orders

Bullwhip Effect

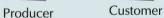
Occurs when slight demand variability is magnified as information moves back upstream

10-518

Risk Pooling

- Risks are aggregated to reduce the impact of individual risks
 - Combine inventories from multiple locations into one
 - Reduce parts and product variability, thereby reducing the number of product components
 - Create flexible capacity

Information Technology: A Supply Chain Enabler


- Information links all aspects of supply chain
- E-business
 - replacement of physical business processes with electronic ones
- Electronic data interchange (EDI)
 - a computer-to-computer exchange of business documents
- Bar code and point-of-sale
 - data creates an instantaneous computer record of a sale

Information Technology: A Supply Chain Enabler (cont.)

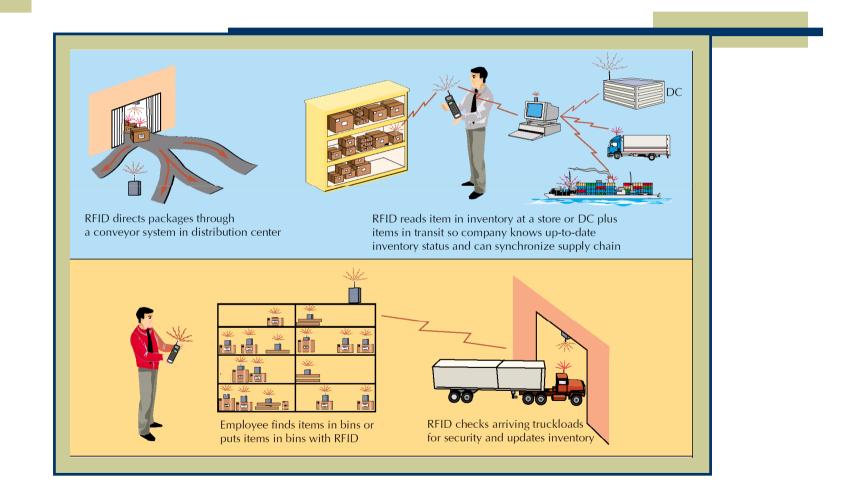
- Radio frequency identification (RFID)
 - technology can send product data from an item to a reader via radio waves
- Internet
 - allows companies to communicate with suppliers, customers, shippers and other businesses around the world instantaneously
- Build-to-order (BTO)
 - direct-sell-to-customers model via the Internet; extensive communication with suppliers and customer

Supply Chain Enablers

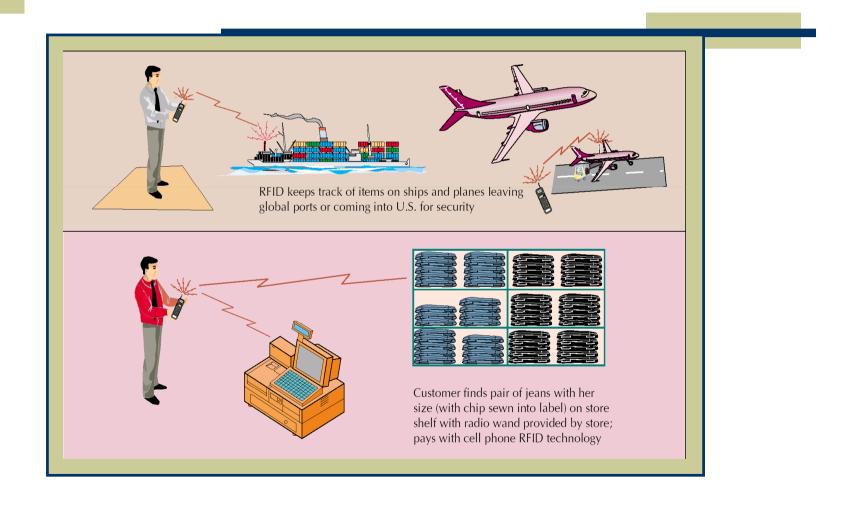
Supplier

EDI—links supply chair members for order processing, accounting, production, inventory control and distribution

Radio Frequency Identification (RFID)– uses radio waves to transfer data between a scanner and an item such as a package or shipping container



Bar codes—contains identyifing information about products as they flow through the supply chain including product description, item number, source and destination, handling procedures, cost, order number, etc.



Internet—allows companies to communicate with suppliers, customers, shippers and other busineses around the world, instantaneously

RFID Capabilities

RFID Capabilities (cont.)

Supply Chain Integration

- Information sharing among supply chain members
 - Reduced bullwhip effect
 - Early problem detection
 - Faster response
 - Builds trust and confidence
- Collaborative planning, forecasting, replenishment, and design
 - Reduced bullwhip effect
 - Lower costs (material, logistics, operating, etc.)
 - Higher capacity utilization
 - Improved customer service levels

Supply Chain Integration (cont.)

- Coordinated workflow, production and operations, procurement
 - Production efficiencies
 - Fast response
 - Improved service
 - Quicker to market
- Adopt new business models and technologies
 - Penetration of new markets
 - Creation of new products
 - Improved efficiency
 - Mass customization

Collaborative Planning, Forecasting, and Replenishment (CPFR)

- Process for two or more companies in a supply chain to synchronize their demand forecasts into a single plan to meet customer demand
- Parties electronically exchange
 - past sales trends
 - point-of-sale data
 - on-hand inventory
 - scheduled promotions
 - forecasts

Supply Chain Management (SCM) Software

- Enterprise resource planning (ERP)
 - software that integrates the components of a company by sharing and organizing information and data

Key Performance Indicators

- Metrics used to measure supply chain performance
 - Inventory turnover

Inventory turns = $\frac{\text{Cost of goods sold}}{\text{Average aggregate value of inventory}}$

Total value (at cost) of inventory

Average aggregate value of inventory = \sum (average inventory for item *i*)×(unit value item *i*)

Days of supply

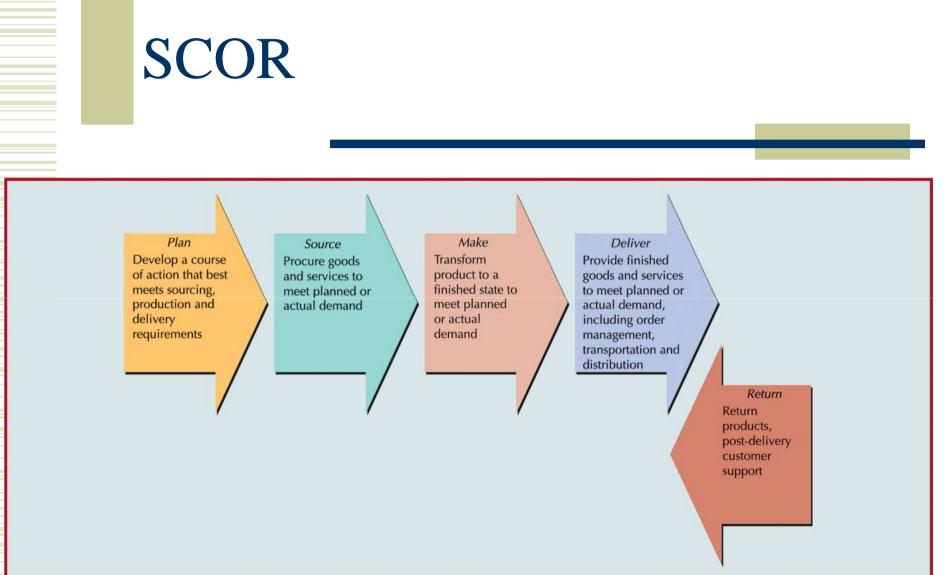
Days of supply = $\frac{\text{Average aggregate value of inventory}}{(\text{Cost of goods sold})/(365 \text{ days})}$

 Fill rate: fraction of orders filled by a distribution center within a specific time period The Tomahawk Motorcycle Company manufactures motorcycles. Last year the cost of goods sold was \$425 million. The company had the following average value of production materials and parts, work-in-process, and finished goods inventory:

Production materials and parts	\$ 4,629,000
Work-in-process	17,465,000
Finished goods	12,322,000
Total average aggregate value of inventory	\$34,416,000

The company wants to know the number of inventory turns and days of supply being held in inventory.

Solution


Computing Key Performance Indicators

Inventory turns =
$$\frac{\text{Cost of goods sold}}{\text{Average aggregate value of inventory}}$$
$$= \frac{\$425,000,000}{34,416,000}$$
Inventory turns = 12.3
Days of supply =
$$\frac{\text{Average aggregate value of inventory}}{(\text{Cost of goods sold})/(365 \text{ days})}$$
$$= \frac{\$34,416,000}{(425,000,000)/(365)}$$
Days of supply = 29.6

Process Control and SCOR

- Process Control
 - not only for manufacturing operations
 - can be used in any processes of supply chain
- Supply Chain Operations Reference (SCOR)
 - a cross industry supply chain diagnostic tool maintained by the Supply Chain Council

10-532

		Performance Attribute	Performance Metric	Definition
	Customer Facing	Supply chain delivery reliability	Delivery performance	Percentage of orders delivered on time and in full to the customer
_			Fill rate	Percentage of orders shipped within 24 hours of order receipt
			Perfect order fulfillment	Percentage of orders delivered on time and in full, perfectly matched with order with no errors
'OR		Supply chain responsiveness	Order fulfillment lead time	Number of days from order receipt to customer delivery
OR nt.)		Supply chain flexibility	Supply chain response time	Number of days for the supply chain to respond to an unplanned significant change in demand without a cost penalty
<i>(</i>)			Production flexibility	Number of days to achieve an unplanned 20% change in orders without a cost penalty
	Internal Facing	Supply chain cost	Supply chain management cost	The direct and indirect cost to plan, source and deliver products and services
			Cost of goods sold	The direct cost of material and labor to produce a product or service
			Value-added productivity	Direct material cost subtracted from revenue and divided by the number of employees, similar to sales per employee
			Warranty/returns processing cost	Direct and indirect costs associated with returns including defective, planned maintenance and excess inventory
		Supply Chain Asset Management Efficiency	Cash-to-cash cycle time	The number of days that cash is tied up as working capital
			Inventory days of supply	The number of days that cash is tied up as inventory
			Asset turns	Revenue divided by total assets including working capital and fixed assets

Chapter 11

Global Supply Chain Procurement and Distribution

Operations Management

Roberta Russell & Bernard W. Taylor, III

Lecture Outline

- Procurement
- E-Procurement
- Distribution
- Transportation
- The Global Supply Chain

Procurement

- The purchase of goods and services from suppliers
- Cross enterprise teams
 - coordinate processes between a company and its supplier
- On-demand (direct-response) delivery
 - requires the supplier to deliver goods when demanded by the customer
- Continuous replenishment
 - supplying orders in a short period of time according to a predetermined schedule

Outsourcing

- Sourcing
 - selection of suppliers
- Outsourcing
 - purchase of goods and services from an outside supplier
- Core competencies
 - what a company does best
- Single sourcing
 - a company purchases goods and services from only a few (or one) suppliers

Categories of Goods and Services...

E-Procurement

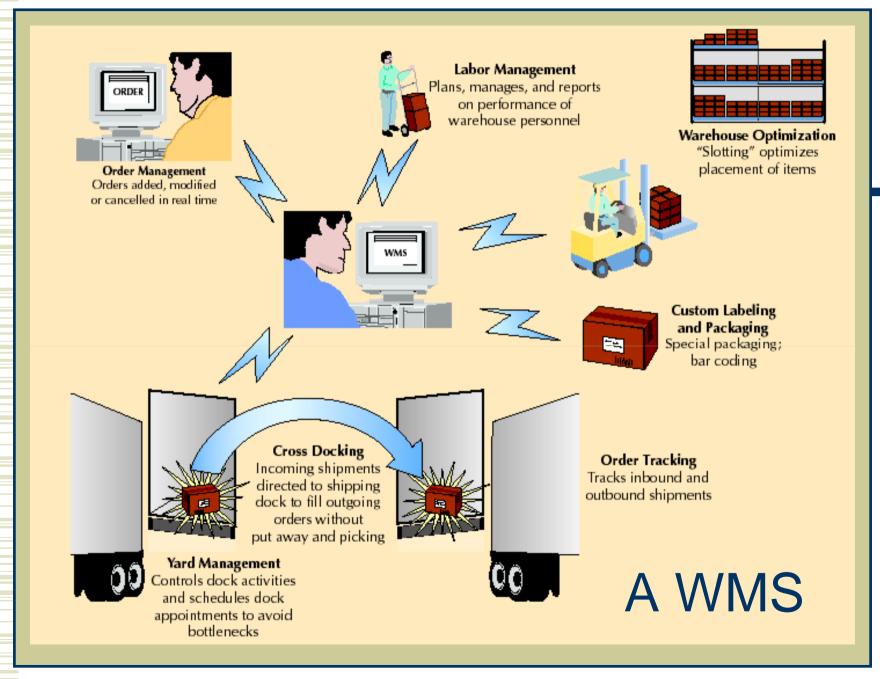
- Direct purchase from suppliers over the Internet, by using software packages or through e-marketplaces, e-hubs, and trading exchanges
- Can streamline and speed up the purchase order and transaction process

E-Procurement (cont.)

- What can companies buy over the Internet?
 - Manufacturing inputs
 - the raw materials and components that go directly into the production process of the product
 - Operating inputs
 - maintenance, repair, and operation goods and services

E-Procurement (cont.)

- E-marketplaces (e-hubs)
 - Websites where companies and suppliers conduct business-to-business activities
- Reverse auction
 - process used by e-marketplaces for buyers to purchase items; company posts orders on the internet for suppliers to bid on


Distribution

Encompasses all channels, processes, and functions, including warehousing and transportation, that a product passes on its way to final customer Order fulfillment process of ensuring on-time delivery of an order Logistics transportation and distribution of goods and services Driving force today is speed Particularly important for Internet dot-coms Distribution Centers (DC) and Warehousing

DCs are some of the largest business facilities in the United States Trend is for more frequent orders in smaller quantities Flow-through facilities and automated material handling Postponement final assembly and product configuration may be done at the DC

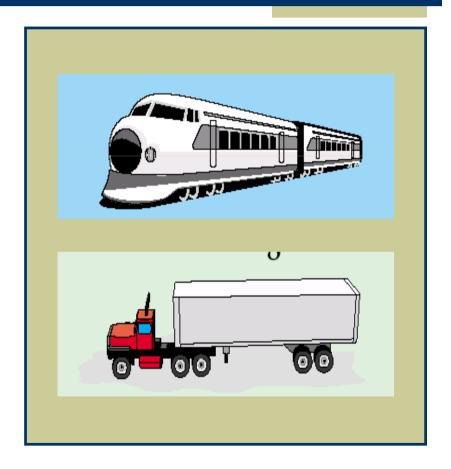
Warehouse Management Systems

Highly automated system that runs day-to-day operations of a DC Controls item putaway, picking, packing, and shipping Features transportation management order management yard management labor management warehouse optimization

Vendor-Managed Inventory

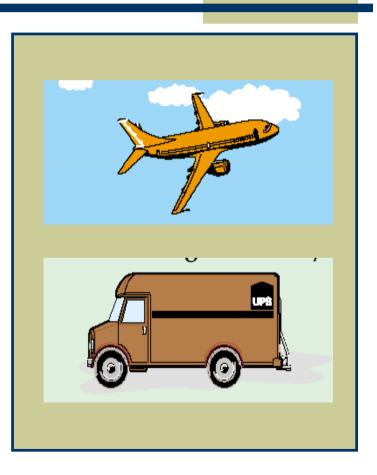
Manufacturers generate orders, not distributors or retailers Stocking information is accessed using EDI A first step towards supply chain collaboration Increased speed, reduced errors, and improved service Collaborative Logistics and Distribution Outsourcing

Collaborative planning, forecasting, and replenishment create greater economies of scale Internet-based exchange of data and information Significant decrease in inventory levels and costs and more efficient logistics Companies focus on core competencies


Transportation

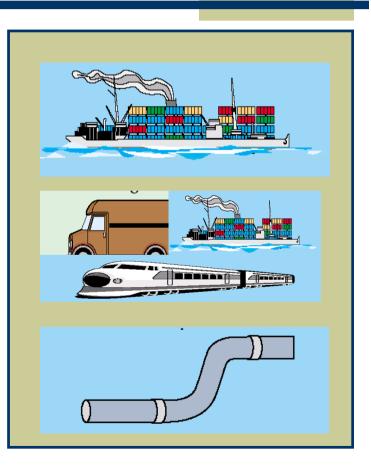
Rail

- low-value, high-density, bulk products, raw materials, intermodal containers
- not as economical for small loads, slower, less flexible than trucking


Trucking

- main mode of freight transport in U.S.
- small loads, point-to-point service, flexible
- More reliable, less damage than rails; more expensive than rails for long distance

Transportation (cont.)


- Air
 - most expensive and fastest, mode of freight transport
 - lightweight, small packages <500 lbs</p>
 - high-value, perishable and critical goods
 - less theft
- Package Delivery
 - small packages
 - fast and reliable
 - increased with e-Business
 - primary shipping mode for Internet companies

Transportation (cont.)

Water

- Iow-cost shipping mode
- primary means of international shipping
- U.S. waterways
- slowest shipping mode
- Intermodal
 - combines several modes of shippingtruck, water and rail
 - key component is containers
- Pipeline
 - transport oil and products in liquid form
 - high capital cost, economical use
 - Iong life and low operating cost

Internet Transportation Exchanges

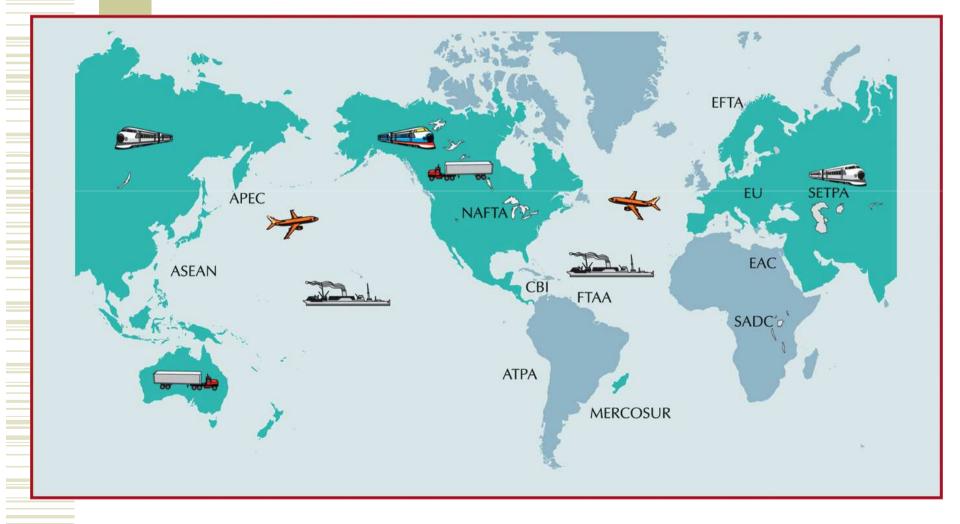
Bring together shippers and carriers Initial contact, negotiations, auctions Examples <u>www.nte.com</u> <u>www.freightquote.com</u>

Global Supply Chain

International trade barriers have fallen New trade agreements To compete globally requires an effective supply chain Information technology is an "enabler" of global trade

Obstacles to Global Chain Transactions

- Increased documentation for invoices, cargo insurance, letters of credit, ocean bills of lading or air waybills, and inspections
- Ever changing regulations that vary from country to country that govern the import and export of goods
- Trade groups, tariffs, duties, and landing costs
- Limited shipping modes


 Differences in communication technology and availability Obstacles to Global Chain Transactions (cont.)

- Different business practices as well as language barriers
- Government codes and reporting requirements that vary from country to country
- Numerous players, including forwarding agents, custom house brokers, financial institutions, insurance providers, multiple transportation carriers, and government agencies
- Since 9/11, numerous security regulations and requirements

Duties and Tariffs

Proliferation of trade agreements Nations form trading groups no tariffs or duties within group charge uniform tariffs to nonmembers Member nations have a competitive advantage within the group Trade specialists include freight forwarders, customs house brokers, export packers, and export management and trading companies

Duties and Tariffs (cont.)

Landed Cost

- Total cost of producing, storing, and transporting a product to the site of consumption or another port
- Value added tax (VAT)
 - an indirect tax assessed on the increase in value of a good at any stage of production process from raw material to final product

Clicker shock

 occurs when an ordered is placed with a company that does not have the capability to calculate landed cost

Web-based International Trade Logistic Systems

- International trade logistics web-based software systems reduce obstacles to global trade
 - convert language and currency
 - provide information on tariffs, duties, and customs processes
 - attach appropriate weights, measurements, and unit prices to individual products ordered over the Web
 - incorporate transportation costs and conversion rates
 - calculate shipping costs online while a company enters an order
 - track global shipments

Recent Trends in Globalization for U.S. Companies

- Two significant changes
 - passage of NAFTA
 - admission of China in WTO
- Mexico
 - cheap labor and relatively short shipping time
- China
 - cheaper labor and longer work week, but lengthy shipping time
 - Major supply chains have moved to China

China's Increasing Role in the Global Supply Chain

- World's premier sources of supply
- Abundance of low-wage labor
- World's fastest growing market
- Regulatory changes have liberalized its market
- Increased exporting of higher technology products

Models in Doing Business in China

- Employ local third-party trading agents
- Wholly-owned foreign enterprise
- Develop your own international procurement offices

Challenges Sourcing from China

- Getting reliable information in more difficult than in the U.S.
- Information technology is much less advanced and sophisticated than in the U.S.
- Work turnover rates among low-skilled workers is extremely high

Effects of 9/11 on Global Chains

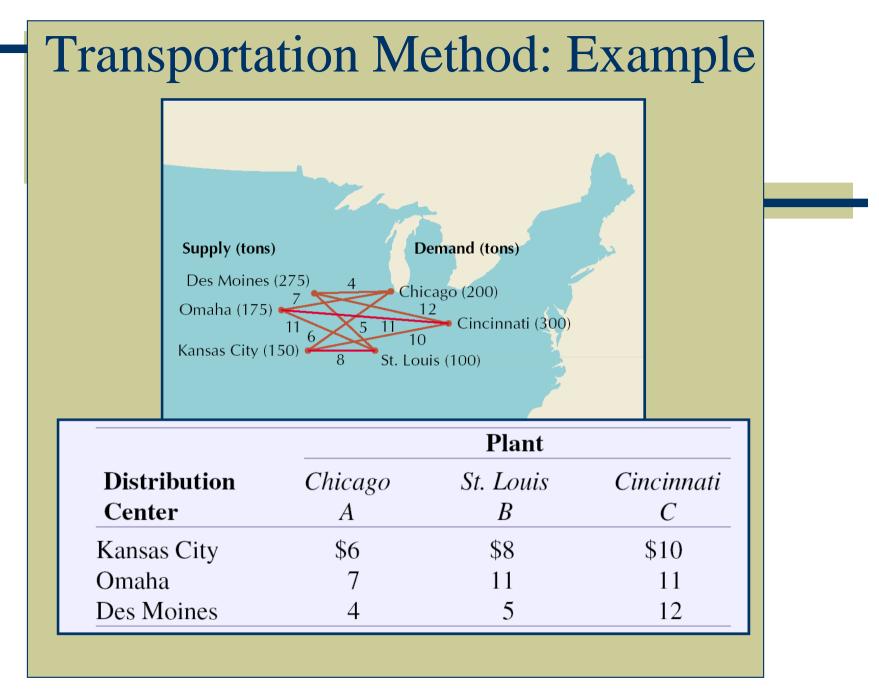
- Increase security measures
 - added time to supply chain schedules
 - Increased supply chain costs
- 24 hours rules for "risk screening"
 - extended documentation
 - extend time by 3-4 days
- Inventory levels have increased 5%
- Other costs include:
 - new people, technologies, equipment, surveillance, communication, and security systems, and training necessary for screening at airports and seaports around the world

Chapter 11 Supplement

Transportation and Transshipment Models

Operations Management

Roberta Russell & Bernard W. Taylor, III


Lecture Outline

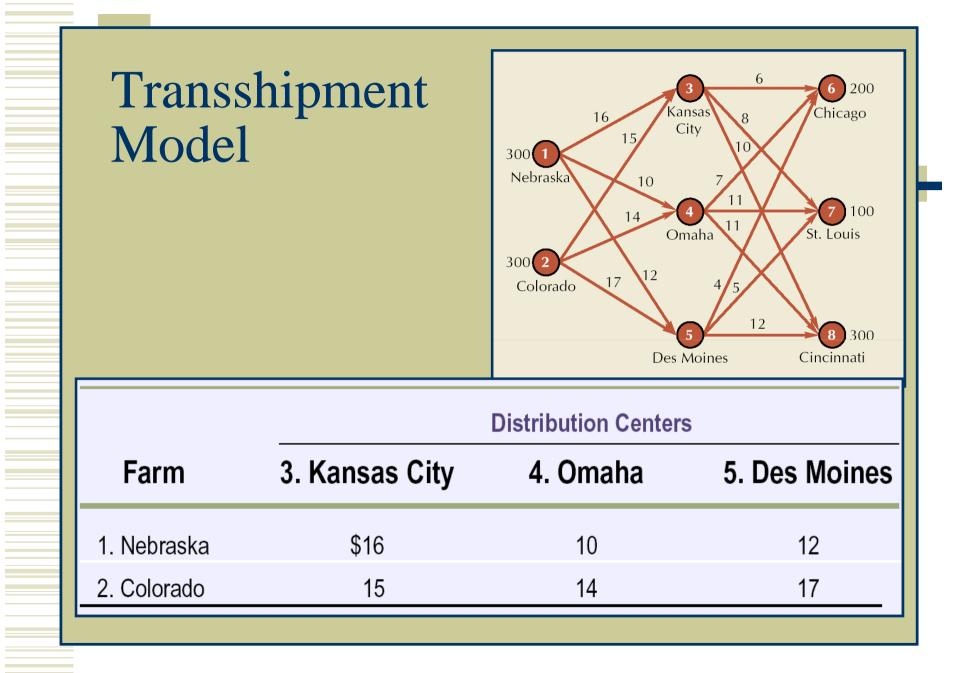
- Transportation Model
- Transshipment Model

Transportation Model

- A transportation model is formulated for a class of problems with the following characteristics
 - a product is transported from a number of sources to a number of destinations at the minimum possible cost
 - each source is able to supply a fixed number of units of product
 - each destination has a fixed demand for product
- Solution Methods
 - stepping-stone
 - modified distribution
 - Excel's Solver

150 175 <u>275</u>
275
600 to
Deman
200
100
300

	Microsoft Excel - Book1									
	_	-								
Problem	🗅 🖻 🖶 🔒	🎒 🐰 🖻 🗠	🝷 Cil 👻 🍓	÷ •						
 		🗟 🚵 🚵 🖾 🌆 🌆 🖉 🍢 👘 😥 🐄 Reply with Changes End Review 🖕								
Formulation	B10 •		6+B6*7+B7*4+			_	_			
Using Excel	1	A	В	С	D	E	F (G		
	2	Pota	toes Ship	oing Exai	nple					
	3				ing Plants		Distribute	d		
	4 Distributi	ion Centers	Chicago		Cincinnat		Supply			
	5 Kansas (ee.ge			150				
	Omaha	,				175	-			
	7 Des Moi	nes				275	-			
Total Cost	8 Demand		200	100	300					
Formula	9 Met Dem		0	0	-					
i unitua	10 Total Co		0					-		
	Microsoft Excel - B		<u>v</u>							
		Insert Format Io	ols <u>D</u> ata <u>W</u> indow	v <u>H</u> elp				Type a que		
	Eile Edit ⊻iew				2 Arial	• 14 •	B <i>I</i> <u>U</u> ≣			
	Ele Edit View	Insert F <u>o</u> rmat Ion 	→ 🍓 Σ → ᢓ↓ ⅔ Reply with <u>C</u> hanges.	🚺 🛍 🚯 😰	•	• 14 •	B I ∐ ≡			
	🖹 File Edit Yjew	Insert F <u>o</u> rmat Ion 	- 🤮 Σ - 🛃 💈	🚺 🛍 🚯 😰	•	• 14 •	B I <u>U</u> ≣ E			
	 Ele Edit View □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	Insert Format Io ※ 哇ョ ∽ → ↔ ≦ョ ♡ ■ ⊕ @ ♥↓ ≉ =85*6+86*7	- 🤮 Σ - 2↓ 2 Reply with ⊆hanges. +B7*4+C5*8+C6* C	(1 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	• D+D6*11+D7*12 D	• 14 •	-1 - 1			
	B Elle Edit View □ □ □ □ □ □ B10 ▼ □ □ □ □ 1 □ □ □ □ □ 2 □ □ □ □ □	Insert Format Io ※ 哇ョ ∽ → ↔ ≦ョ ♡ ■ ⊕ @ ♥↓ ≉ =85*6+86*7	- 🤮 Σ - 2↓ 2 Reply with ⊆hanges. +B7*4+C5*8+C6* C	(1) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	• D+D6*11+D7*12 D Example	• 14 •	-1 - 1			
	Eile Edit View □ ☞ ■ @ @ Eile Edit View □ ☞ ■ @ @ Eile Edit View ■ @ Edit View	Insert Format Iou	- 🤹 Σ - 2↓ 2 Reply with ⊆hanges. +B7*4+C5*8+C6* C Potatoes	 ↓ ▲ ◆ ⑦ End Review 11+C7*5+D5*10 s Shipping Receiv 	D+D6*11+D7*12 D Example ing Plants		-1 - 1	臺 臺 國 \$ %		
	B Elle Edit View □ □ □ □ □ □ B10 ▼ □ □ □ □ 1 □ □ □ □ □ 2 □ □ □ □ □	Insert Format Io	- 🤮 Σ - 2↓ 2 Reply with ⊆hanges. +B7*4+C5*8+C6* C	 ↓ ▲ ◆ ⑦ End Review 11+C7*5+D5*10 s Shipping Receiv 	• D+D6*11+D7*12 D Example	• 14 • Supply	-1 - 1	≡ ≡ ፼ \$ % F Distributed St		
	Ele Edit View Ele Edit View Blo Flace Blo Fl	Insert Format Io	- 🤹 Σ - 2↓ 2 Reply with ⊆hanges. +B7*4+C5*8+C6* C Potatoes	 ↓ ▲ ◆ ⑦ End Review 11+C7*5+D5*10 s Shipping Receiv 	D+D6*11+D7*12 D Example ing Plants	Supply 150 175	-1 - 1	≣ ≣ ፼ \$ % Distributed St =SUM(B5:D5 =SUM(B6:D6)		
	Ele Edit View C 2 B10 A 1 C 4 Distribution Kansas City 6 Omaha 7 Des Moines	Insert Format Io	-	4 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Example ing Plants ncinnati	Supply 150 175 275	E	≣ ≣ ፼ \$ % Distributed St =SUM(B5:D5 =SUM(B6:D6)		
	Ele Edit View Ele Edit View B10 A A A A Distribution Kansas Citt Comaha Comaha Des Moines B Demand	Insert Format Io	- St. Louis	4 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Example ing Plants ncinnati	Supply 150 175 275 =SUM(I	E	≣ ≣ ፼ \$ % Distributed St =SUM(B5:D5 =SUM(B6:D6)		
	Ele Edit View Ele Edit View Blo Flace Blo Fl	Insert Format Io Second Second Secon	-	4 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Example ing Plants ncinnati	Supply 150 175 275 =SUM(I	E	≡ ≡ ፼ \$ % Distributed St =SUM(B5:D5) =SUM(B6:D6)		
	Ele Edit View C Edit C E	Insert Format Io	-	4 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Example ing Plants ncinnati	Supply 150 175 275 =SUM(I	E	Type a que Type a que F Distributed Su =SUM(B5:D5) =SUM(B6:D6) =SUM(B7:D7)		
	Ele Edit View Ele Edit View Blo Flace Blo Fl	Insert Format Io Second Second Secon	-	4 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Example ing Plants ncinnati	Supply 150 175 275 =SUM(I	E	≡ ≡ ፼ \$ % Distributed St =SUM(B5:D5) =SUM(B6:D6)		



1	A	В	С	D	E	F	G	
2	P	otatoes S	hipping Ex	ample				
2				ng Plants		Distribu	ited	Using Solver
4	Distribution Cer	Chicago		- -	Supply	Supply		from Tools
5	Kansas City	eeuge		-	150			Menu
6	Omaha				175	-		Internet internet
7	Des Moines				275	-		
8	Demand	200	100	300	600			
9	Met Demand	0	0	0				
10	Total Cost	0				Solver (Options	
11	Solver Parameters		9		? ×	Max <u>T</u> in	ne:	100 seconds O
12	S <u>e</u> t Target Cell:	\$B\$10 💽			Solve	<u>I</u> teratio	ins:	100 Car
13			D ⊻alue of: _)	Close	Precisio	n:	0.000001 <u>L</u> oad M
14	By Changing Cells:					Tol <u>e</u> ran	ice:	5 % <u>S</u> ave M
15	\$B\$5:\$D\$7		<u>.</u>	Guess		Conver	dence:	0.0001 <u>H</u> e
16	-Subject to the Constra			(Options		-	
17	\$B\$8:\$D\$8 = \$B\$9:\$ \$E\$5:\$E\$7 = \$F\$5:\$I	D\$9 F\$7	<u> </u>	Add			ume Linea ume Non-	ar Model 🛛 🗌 Use Automatic So -Negative 🗖 Show Iteration <u>R</u>
18				hange	Reset All	Estimal	tes	Derivatives
19	-		-	Delete			angent	Eorward O
20							uadratic	C <u>C</u> entral C C <u>o</u> nju
21								

Solution

Ì	<u>File E</u> dit <u>V</u> iew <u>I</u> nser	t F <u>o</u> rmat <u>T</u> i	ools <u>D</u> ata <u>W</u>	/indow <u>H</u> elp							
2	🗃 🖶 🚑 😹 🖻 🗠 - 🖙 🍓 🛛 - 🛃 🕌 🛍 🦑 🕄 🗳 Arial										
a	a 🖆 🚵 🖾 🌇 🌘 🖓 🎭 🙉 🐄 Reply with Changes End Review 🖕										
	A2 🝷 🏂 Potatoes Shipping Example										
	A B C D E F G										
2	Potatoes Shipping Example										
3	Receiving Plants Distributed										
1	Distribution Cer	Chicago	St. Louis	Cincinnati	Supply	Supply	Supply				
5	Kansas City	0	0	150	150	150					
6	Omaha	25	0	150	175	175					
7	Des Moines	175	100	0	275	275					
3	Demand	200	100	300	600						
9	Met Demand	200	100	300							
_	Total Cost	4525									
0											

		licrosoft Excel - Book1									
	•	<u>File E</u> dit <u>V</u> iew <u>I</u> nser	t F <u>o</u> rmat <u>T</u> o	ools <u>D</u> ata <u>W</u>	<u>/</u> indow <u>H</u> elp						
		📽 🖬 🔒 👹 👗	🛅 🗠 🕶 🖂	- 🤹 Σ -	21 Z1 🛍 4	🛃 🙄 🎇	rial		• 14 • B Z		
	1		2 🖪 🖉 💌	₽Reply with <u>C</u> ha	inges E <u>n</u> d Rev	iew 🖕					
						*5+D5*10+D6*1					
	1	A	В	С	D	E	F	G	H		
	2	Potatoes Shipping Example									
	3	Receiving Plants Distributed Excess									
	4	Distribution Cer	Chicago		Ŧ	Supply	Supply		Supply		
	5	Kansas City		0							
	6	Omaha 0 0 150 175 175									
	7	Des Moines	200	375	375		75				
	8	Demand	200	100	300	700					
	9	Met Demand	200	100	300						
	10	Total Cost	4450								
	11	Solver Par)			? ×				
	12										
	13	S <u>e</u> t Target Equal To:		\$10 <u></u> ⊙ Мі <u>п</u> С <u>у</u>	alue of: 0		<u>S</u> olve				
	14	<u>By Chang</u>		em <u>i</u> o <u>v</u>	alue or ; jo		Close				
	15	\$B\$5:\$D	\$7,\$H\$5:\$H\$7		1	<u>G</u> uess					
Modified	16	-S <u>u</u> bject to	the Constraints				Options				
Modified	17	\$B\$8:\$D	\$8 = \$B\$9:\$D\$9		<u> </u>	Add					
Problem	18	\$E\$5:\$E	\$7 = \$F\$5:\$F\$7			Change					
Solution	19					Delete	eset All				
	20				<u> </u>		Help				
	21										

Transshipment Model: Solution

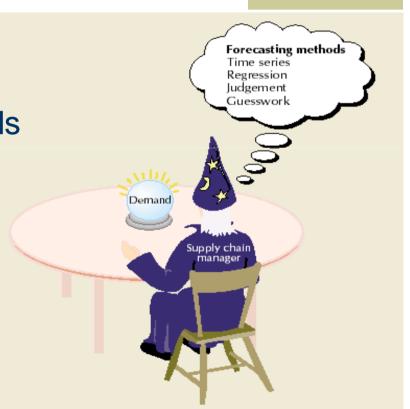
	K11 ▼ f≈ =SUM(K3:K4,K6:K8)												
	A	В	С	D	E	F	G	Н		J	K	L	М
2	From	Kansas City	Omaha	Des Moi	Supply								
3	Nebraska	0	0	300	300	300		0	0	3600	3600		
4	Colorado	0	300	0	300	300		0	4200	0	4200		
5	Total	0	300	300	600								
6								0	0	0	0		
7	Unit Cost Tab	le						0	0	3300	3300		
8	From	KC	Omaha	Des Moi	nes			800	500	0	1300		
9	Nebraska	16	10	12									
10	Colorado	15	14	17									
11							TOTAL COST 12400						
12		То											
13	From	Chicago	St. Louis	Cincinna	Supply	So	ver Paramete	ers					<u>? ×</u>
14	Kansas City	0	0	0	0	S	<u>e</u> t Target Cell:	\$K\$11	<u>.</u>			<u>S</u> olv	e
15	Omaha	0	0	300	300	E	qual To: 🔿	Max 💿 N	4i <u>n ⊂ V</u> alu	e of: 🚺	1		
16	Des Moines	200	100	0	300		y Changing Cell					Clos	e
17	Demand	200	100	300	600		\$B\$14:\$D\$16,\$						
18	Met Demand	200	100	300			\$B\$14:\$D\$16,\$B\$3:\$D\$4 Guess -Subject to the Constraints:						
19													
20	Unit Cost Tab	le					\$B\$17:\$D\$17 = \$B\$5:\$D\$5 = \$I	E\$14:\$E\$16	5		<u>A</u> dd		
21	From	Chicago	St. Louis		ti		$\dot{\$}E\dot{\$}3:\dot{\$}E\dot{\$}4=\dot{\$}F$	=\$3:\$F\$4			⊆hange		
22	Kansas City	6	8	10							Delete	<u>R</u> eset	All
23	Omaha	7	11	11						Y	Delece	l <u>H</u> el	
24	Des Moines	4	5	12									
25													

Chapter 12

Forecasting

Operations Management

Roberta Russell & Bernard W. Taylor, III


Lecture Outline

- Strategic Role of Forecasting in Supply Chain Management
- Components of Forecasting Demand
- Time Series Methods
- Forecast Accuracy
- Time Series Forecasting Using Excel
- Regression Methods

Forecasting

- Predicting the future
- Qualitative forecast methods
 - subjective

- Quantitative forecast methods
 - based on mathematical formulas

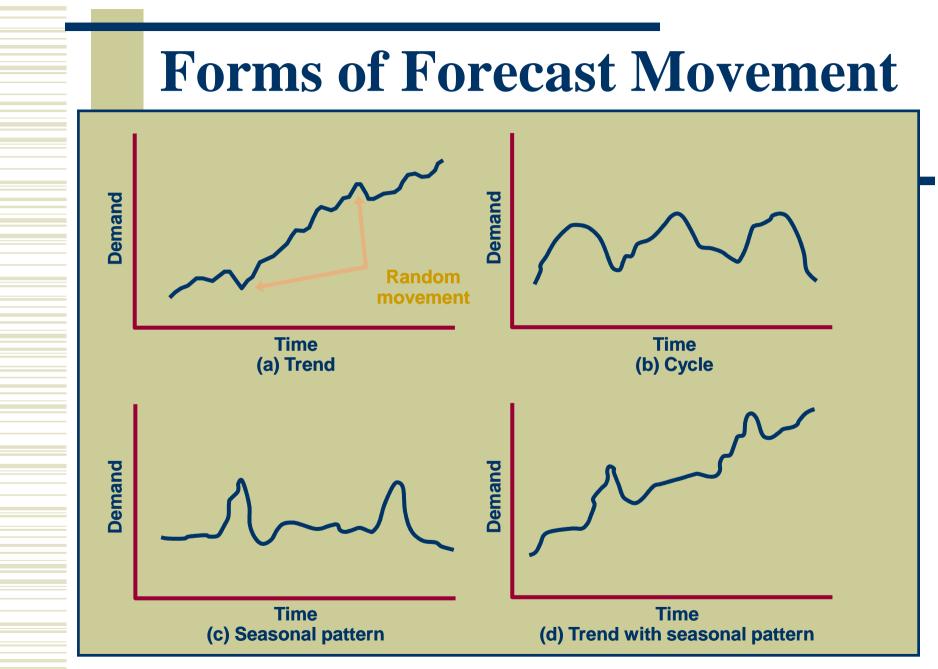
Forecasting and Supply Chain Management

- Accurate forecasting determines how much inventory a company must keep at various points along its supply chain
- Continuous replenishment
 - supplier and customer share continuously updated data
 - typically managed by the supplier
 - reduces inventory for the company
 - speeds customer delivery
- Variations of continuous replenishment
 - quick response
 - JIT (just-in-time)
 - VMI (vendor-managed inventory)
 - stockless inventory

Forecasting

- Quality Management
 - Accurately forecasting customer demand is a key to providing good quality service
- Strategic Planning
 - Successful strategic planning requires accurate forecasts of future products and markets

Types of Forecasting Methods


- Depend on
 - time frame
 - demand behavior
 - causes of behavior

Time Frame

- Indicates how far into the future is forecast
 - Short- to mid-range forecast
 - typically encompasses the immediate future
 - daily up to two years
 - Long-range forecast
 - usually encompasses a period of time longer than two years

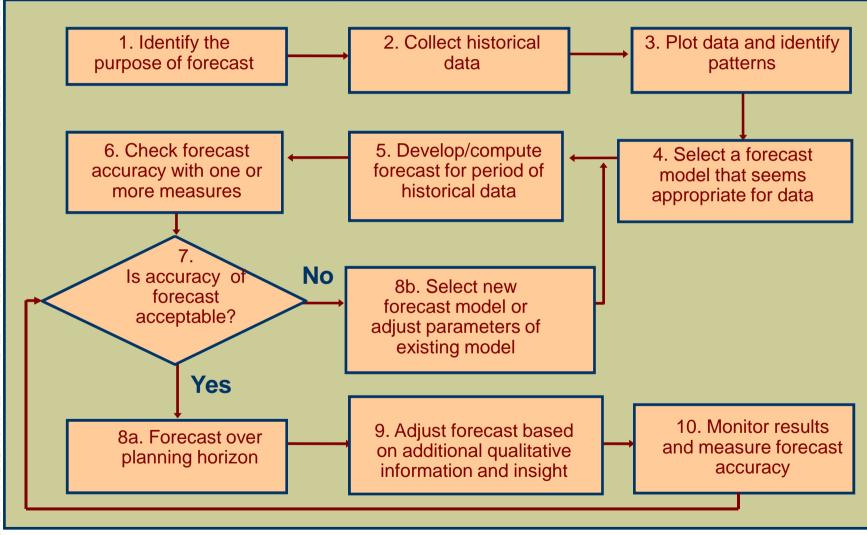
Demand Behavior

- Trend
 - a gradual, long-term up or down movement of demand
- Random variations
 - movements in demand that do not follow a pattern
- Cycle
 - an up-and-down repetitive movement in demand
- Seasonal pattern
 - an up-and-down repetitive movement in demand occurring periodically

Forecasting Methods

Time series

- statistical techniques that use historical demand data to predict future demand
- Regression methods
 - attempt to develop a mathematical relationship between demand and factors that cause its behavior


Qualitative

 use management judgment, expertise, and opinion to predict future demand

Qualitative Methods

- Management, marketing, purchasing, and engineering are sources for internal qualitative forecasts
- Delphi method
 - involves soliciting forecasts about technological advances from experts

Forecasting Process

Time Series

- Assume that what has occurred in the past will continue to occur in the future
- Relate the forecast to only one factor time
- Include
 - moving average
 - exponential smoothing
 - linear trend line

Moving Average

- Naive forecast
 - demand in current period is used as next period's forecast
- Simple moving average
 - uses average demand for a fixed sequence of periods
 - stable demand with no pronounced behavioral patterns
- Weighted moving average
 - weights are assigned to most recent data

Moving Average: Naïve Approach

MONTH	ORDERS PER MONTH	FORECAS
	Jan	120 -
	Feb	92 0
	Mar	1090
	Apr	750
	May	11 0 5
	June	50 0
	July	7 5 0
	Aug	13 0 5
	Sept	1 16 0
	Oct	90 0
	~	90
Nov		~

Simple Moving Average

$$MA_n = \frac{\sum_{i=1}^n D_i}{n}$$

where

n = number of periods in the moving average $D_i =$ demand in period *i*

12-590

3-month Simple Moving Average

MONTH	ORDERS PER MONTH	MOVING AVERAGE	$\sum_{i=1}^{3} D_i$
Jan	120	_	$MA_3 =$
Jan Feb	90	_	
Mar	100	_	90 + 110 + 130
Apr	75	103.3	=
Mar Apr May	110	88.3	•
June	50	95.0	
July	75	78.3	= 110 orders
Aug	130	78.3	for Nov
Aug Sept Oct	110	85.0	
Oct	90	105.0	
Nov	-	110.0	

5-month Simple Moving Average

MONTH	ORDERS PER MONTH	MOVING AVERAGE	$\sum_{i=1}^{5} D_{i}$
Jan	120	_	i = 1
Feb	90	_	$MA_5 =$
Mar	100	_	5
Apr	75	_	
May	110	_	90 + 110 + 130+75+50
June	50	99.0	= 5
July	75	85.0	
Aug	130	82.0	
Sept	110	88.0	= 91 orders
Oct	90	95.0	for Nov
Νον	-	91.0	

Smoothing Effects 150 5-month 125 100 Orders 75 3-month **50 Actual** 25 0 Jan Feb May June July Aug Sept Oct Nov Mar Apr Month

Weighted Moving Average

Adjusts moving average method to more closely reflect data fluctuations

$$WMA_n = \sum_{i=1}^n W_i D_i$$

where

W_i = the weight for period *i*, between 0 and 100 percent

 $\sum W_i = 1.00$

12-594

Weighted Moving Average Example

MONTH	WEIGHT	DATA
August	17%	130
September	33%	110
October	50%	90
November Foreca	3	<i>i</i> = 1
= (0.50)(90) + (0)	(1.33)(110) + (0)	.17)(130)

Exponential Smoothing

Averaging method Weights most recent data more strongly Reacts more to recent changes Widely used, accurate method

Exponential Smoothing (cont.)

 $F_{t+1} = \alpha D_t + (1 - \alpha)F_t$ where:

 F_{t+1} = forecast for next period

- D_t = actual demand for present period
- F_t = previously determined forecast for present period

 α = weighting factor, smoothing constant

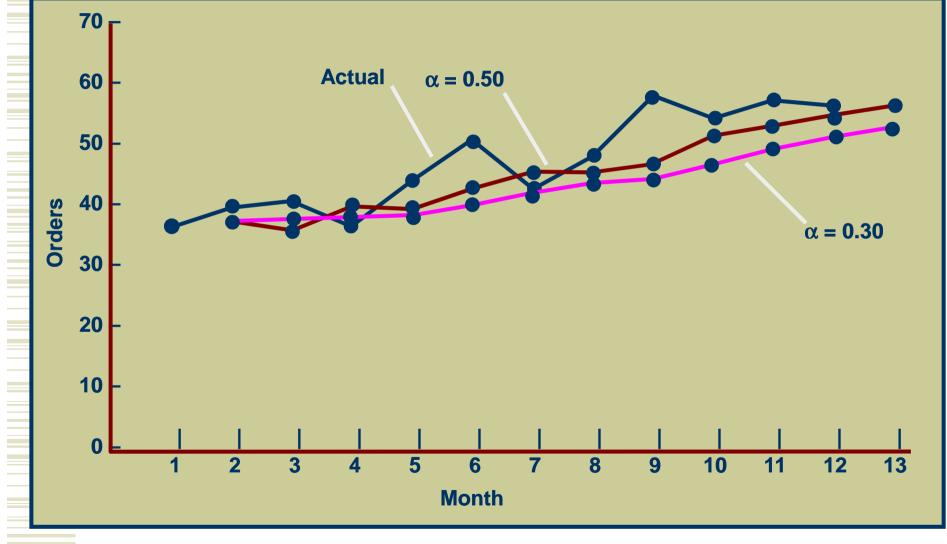
Effect of Smoothing Constant

 $0.0 \le \alpha \le 1.0$ If $\alpha = 0.20$, then $F_{t+1} = 0.20 D_t + 0.80 F_t$ If $\alpha = 0$, then $F_{t+1} = 0 D_t + 1 F_t = F_t$ Forecast does not reflect recent data If $\alpha = 1$, then $F_{t+1} = 1 D_t + 0 F_t = D_t$ Forecast based only on most recent data

Exponential Smoothing (α=0.30)

PERIOD	MONTH	DEMAND
1	Jan	37
2	Feb	40
3	Mar	41
4	Apr	37
5	May	45
6	Jun	50
7	Jul	43
8	Aug	47
9	Sep	56
10	Oct	52
11	Nov	55
12	Dec	54

 $F_2 = \alpha D_1 + (1 - \alpha)F_1$ = (0.30)(37) + (0.70)(37) = 37


$$F_3 = \alpha D_2 + (1 - \alpha)F_2$$

= (0.30)(40) + (0.70)(37)
= 37.9

 $F_{13} = \alpha D_{12} + (1 - \alpha) F_{12}$ = (0.30)(54) + (0.70)(50.84) = 51.79

Exponential Smoothing (cont.)

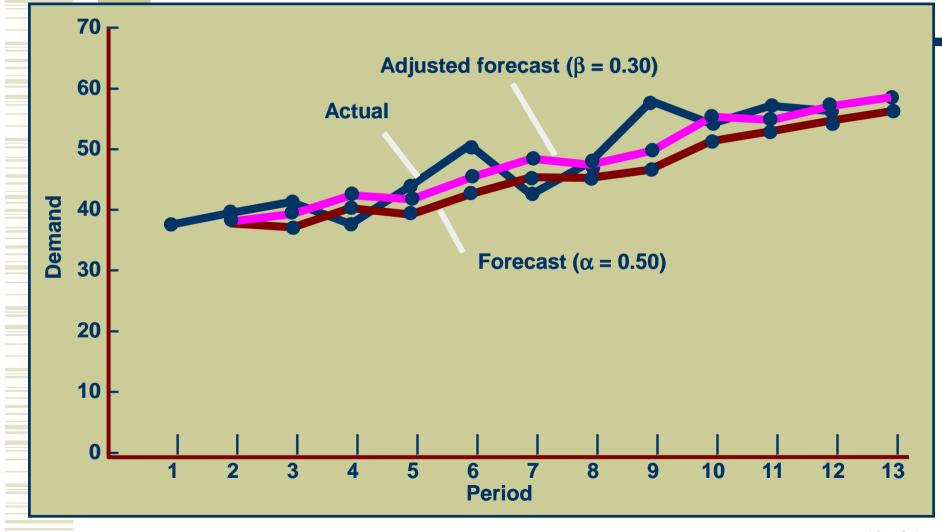
			FORE	CAST, F_{t+1}
PERIOD	MONTH	DEMAND	(α = 0.3)	(α = 0.5)
1	Jan	37	-	-
2	Feb	40	37.00	37.00
3	Mar	41	37.90	38.50
4	Apr	37	38.83	39.75
5	May	45	38.28	38.37
6	Jun	50	40.29	41.68
7	Jul	43	43.20	45.84
8	Aug	47	43.14	44.42
9	Sep	56	44.30	45.71
10	Oct	52	47.81	50.85
11	Nov	55	49.06	51.42
12	Dec	54	50.84	53.21
13	Jan	-	51.79	53.61

Exponential Smoothing (cont.)

Adjusted Exponential Smoothing

 $AF_{t+1} = F_{t+1} + T_{t+1}$ where T = an exponentially smoothed trend factor

 $T_{t+1} = \beta(F_{t+1} - F_t) + (1 - \beta) T_t$ where $T_t = \text{the last period trend factor}$ $\beta = \text{a smoothing constant for trend}$


Adjusted Exponential Smoothing (β=0.30)

	PERIOD	MONTH	DEMAND	$T_3 = \beta(F_3 - F_2) + (1 - \beta) T_2$
	1	Jan	37	= (0.30)(38.5 - 37.0) + (0.70)(0)
	2	Feb	40	= 0.45
Ξ	3	Mar	41	
	4	Apr	37	$AF_3 = F_3 + T_3 = 38.5 + 0.45$
	5	May	45	= 38.95
	6	Jun	50	
	7	Jul	43	$T_{13} = \beta(F_{13} - F_{12}) + (1 - \beta) T_{12}$
	8	Aug	47	= (0.30)(53.61 - 53.21) + (0.70)(1.77)
	9	Sep	56	= 1.36
	10	Oct	52	
	11	Nov	55	
	12	Dec	54	$AF_{13} = F_{13} + T_{13} = 53.61 + 1.36 = 54.97$

Adjusted Exponential Smoothing: Example

E	Example	e			
			FORECAST	TREND	ADJUSTED
PERIOD	MONTH	DEMAND	F _{<i>t</i> +1}	T _{<i>t</i> +1}	FORECAST AF _{t+1}
1	Jan	37	37.00	_	_
2	Feb	40	37.00	0.00	37.00
3	Mar	41	38.50	0.45	38.95
4	Apr	37	39.75	0.69	40.44
5	May	45	38.37	0.07	38.44
6	Jun	50	38.37	0.07	38.44
7	Jul	43	45.84	1.97	47.82
8	Aug	47	44.42	0.95	45.37
9	Sep	56	45.71	1.05	46.76
10	Oct	52	50.85	2.28	58.13
11	Nov	55	51.42	1.76	53.19
12	Dec	54	53.21	1.77	54.98
13	Jan	-	53.61	1.36	54.96

Adjusted Exponential Smoothing Forecasts

Linear Trend Line

 \overline{y}

y = a + bx

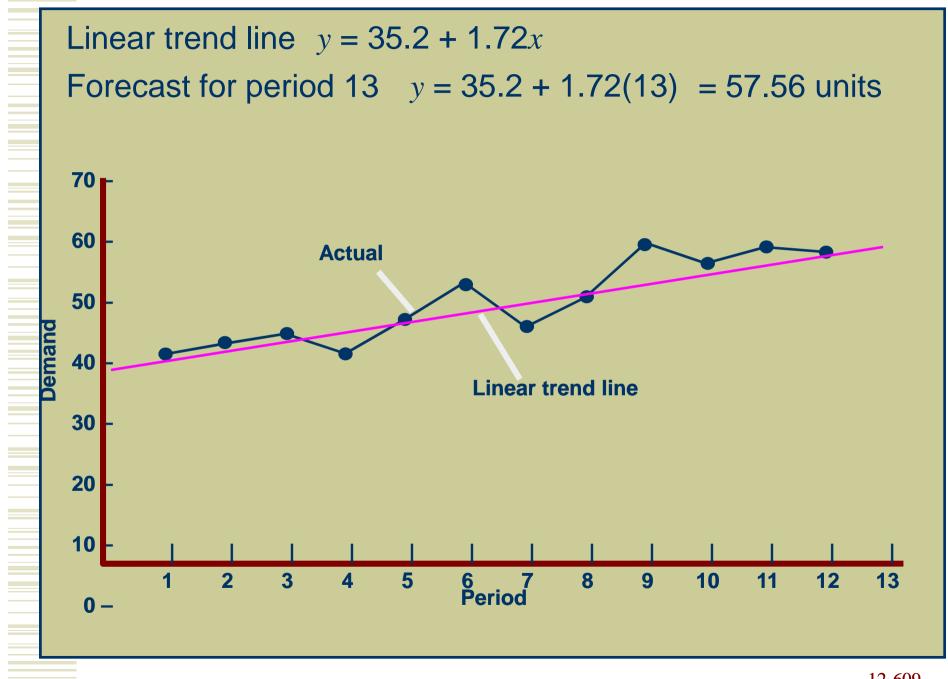
where a = intercept b = slope of the line x = time period y = forecast fordemand for period x

$$\frac{\sum xy - n\overline{xy}}{\sum x^2 - n\overline{x}^2}b =$$

$$-a = y - bx$$
where
$$n = \text{number of periods}$$

$$x = \frac{\sum x}{n} = \text{mean of the } x \text{ values}$$

$$= \frac{\sum y}{n} = \text{mean of the } y \text{ values}$$


Least Squares Example

x(PERIOD)	y(DEMAND)	xy	<i>x</i> ²
1	73	37	1
2	40	80	4
3	41	123	9
4	37	148	16
5	45	225	25
6	50	300	36
7	43	301	49
8	47	376	64
9	56	504	81
10	52	520	100
11	55	605	121
12	54	648	144
78	557	3867	650

12-607

Least Squares Example (cont.)

<i>x</i> = = 6.5	
<i>y</i> = = 46.42	
<u>3867 - (12)(6.5)(46.42)</u> <u>650 - 12(6.5)²</u>	=1.72
<i>a</i> = <i>y</i> - <i>bx</i> 46.42 - (1.72)(6.5) = 35.2	
	y = = 46.42 <u>3867 - (12)(6.5)(46.42)</u> <u>650 - 12(6.5)^2</u> a = y - bx

Seasonal Adjustments

Repetitive increase/ decrease in demand Use seasonal factor to adjust forecast

Seasonal factor =
$$S_i = \frac{D_i}{\sum D}$$

Seasonal Adjustment (cont.)

	DEMAND (1000'S PER QUARTER)					
YEAR	1	2	3	4	Total	
2002	12.6	8.6	6.3	17.5	45.0	
2003	14.1	10.3	7.5	18.2	50.1	
2004	15.3	10.6	8.1	19.6	53.6	
Total	42.0	29.5	21.9	55.3	148.7	

$$S_{1} = \frac{D_{1}}{\sum D} = \frac{42.0}{148.7} = 0.28 \qquad S_{3} = \frac{D_{3}}{\sum D} = \frac{21.9}{148.7} = 0.15$$
$$S_{2} = \frac{D_{2}}{\sum D} = \frac{29.5}{148.7} = 0.20 \qquad S_{4} = \frac{D_{4}}{\sum D} = \frac{55.3}{148.7} = 0.37$$

Seasonal Adjustment (cont.)

For 2005

y = 40.97 + 4.30x = 40.97 + 4.30(4) = 58.17

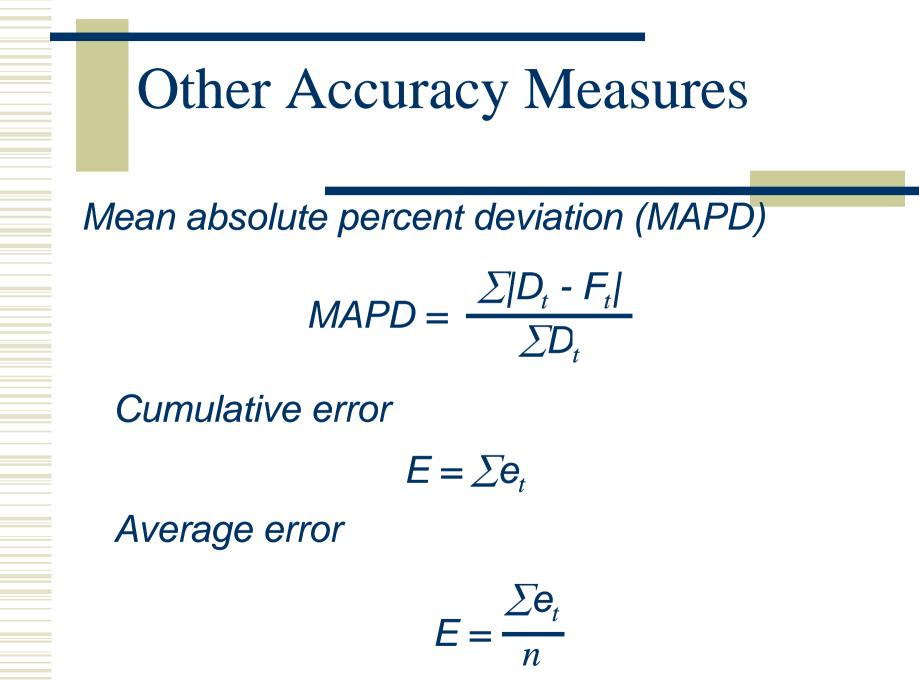
 $SF_1 = (S_1) (F_5) = (0.28)(58.17) = 16.28$ $SF_2 = (S_2) (F_5) = (0.20)(58.17) = 11.63$ $SF_3 = (S_3) (F_5) = (0.15)(58.17) = 8.73$ $SF_4 = (S_4) (F_5) = (0.37)(58.17) = 21.53$

Forecast Accuracy

- Forecast error
 - difference between forecast and actual demand
 - MAD
 - mean absolute deviation
 - MAPD
 - mean absolute percent deviation
 - Cumulative error
 - Average error or bias

Mean Absolute Deviation (MAD)

$$\mathsf{MAD} = \frac{\Sigma | D_t - F_t|}{n}$$


where

- t = period number
- D_t = demand in period t
- F_t = forecast for period t
- n = total number of periods

| | = absolute value

MAD Example

PER	RIOD	DEMAND, D_t	F_{t} ($\alpha = 0.3$)	$(D_t - F_t)$	$ D_t - F_t $	
	1	37	37.00	_		_
					3.0	0
			$\Sigma D = F$	а 1	3.1	0
		MAD :	$\frac{\sum D_t - F_t }{n}$		1.8	3
			- n		6.7	2
			_53.39		9.6	9
		:			0.2	.0
			11		3.8	6
		— <i>4</i>	.85		11.7	0
			r.00		4.1	9
					5.9	4
4	IZ	34	30.04	5.15	3.1	5
		557		49.31	53.3	9

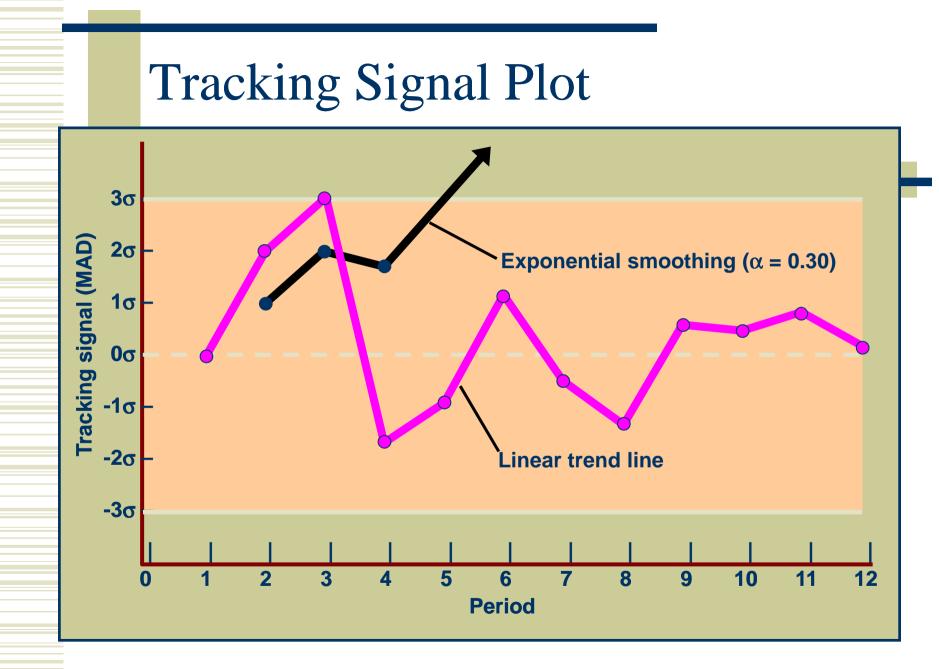
12-616

Comparison of Forecasts

FORECAST	MAD	MAPD	E	(<i>E</i>)
Exponential smoothing (α = 0.30)	4.85	9.6%	49.31	4.48
Exponential smoothing (α = 0.50)	4.04	8.5%	33.21	3.02
Adjusted exponential smoothing	3.81	7.5%	21.14	1.92
(α = 0.50 ,	β = 0.30))		
Linear trend line	2.29	4.9%	-	-

Forecast Control

- Tracking signal
 - monitors the forecast to see if it is biased high or low

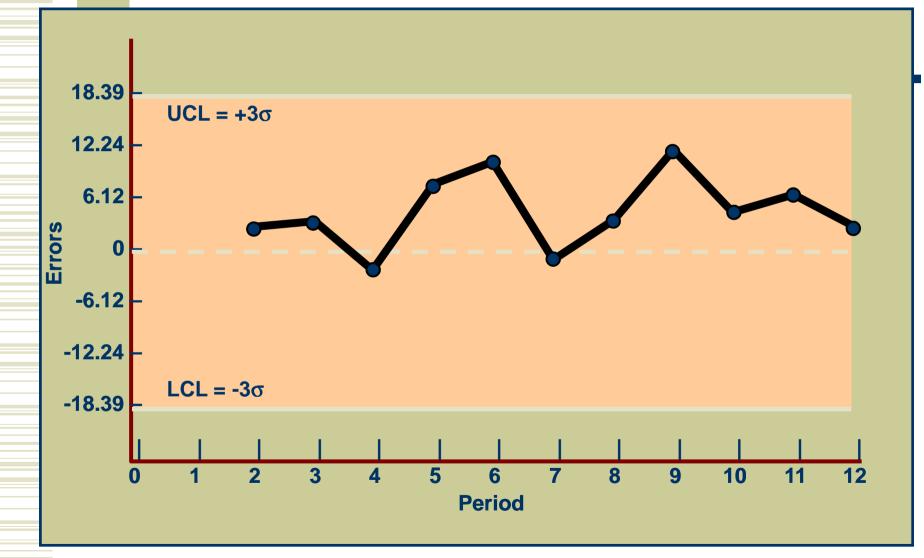

Tracking signal =

$$\frac{\sum (D_t - F_t)}{\text{MAD}} = \frac{E}{\text{MAD}}$$

- 1 MAD ≈ 0.8 б
- Control limits of 2 to 5 MADs are used most frequently

Tracking Signal Values

PERIOD	DEMAND D _t	FORECAST, <i>F</i> _t	$\frac{\mathbf{ERROR}}{D_t - F_t}$	$\sum E = \sum (D_t - F_t)$	MAD	TRACKING SIGNAL
1	37	37.00	_	_	_	_
2	40	37.00	3.00	3.00	3.00	1.00
3	41	37.90	3.10	6.10	3.05	2.00
4	37				2.64	1.62
5	45	Tracking sig	nal for pe	eriod 3	3.66	3.00
6	50	•••			1.87	4.25
7	43		6 1 0		4.09	5.01
8	47	TS ₃ = -	$\frac{6.10}{3.05} =$	2.00	4.06	6.00
9	56	5	3.05		5.01	7.19
10	52				4.92	8.18
11	55	49.00	J.34	40.17	5.02	9.20
12	54	50.84	3.15	49.32	4.85	10.17


12-620

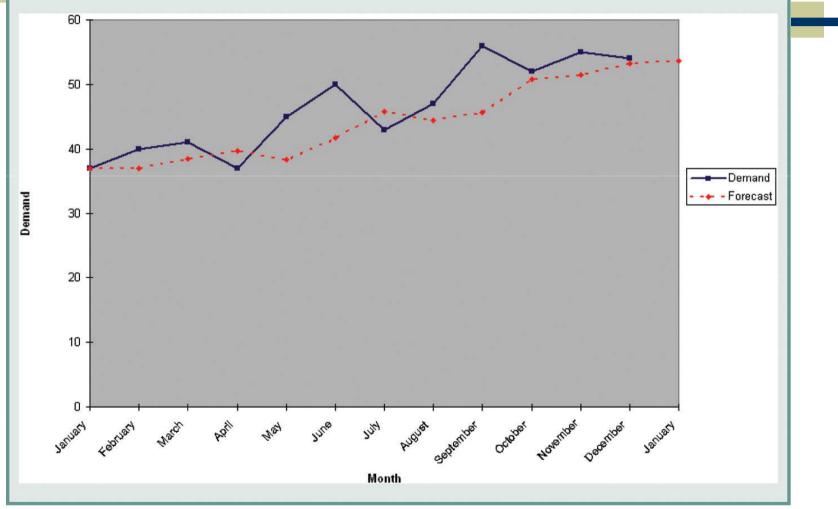
Statistical Control Charts

$$\sigma = \sqrt{\frac{\sum (D_t - F_t)^2}{n - 1}}$$

Using σ we can calculate statistical control limits for the forecast error Control limits are typically set at $\pm 3\sigma$

Statistical Control Charts

12-622


Time Series Forecasting using Excel

- Excel can be used to develop forecasts:
 - Moving average
 - Exponential smoothing
 - Adjusted exponential smoothing
 - Linear trend line

Exponentially Smoothed and Adjusted Exponentially Smoothed Forecasts

				ata <u>W</u> indow		21 40 6	1 1000	A.J.1	• 10 • B I U 手署 書 国 \$ %,	+.0 .00 cim ci			for help 🔹 🛓
							120% +	Arial		.000 5= 5	F E + 🖉 +	△ • •	
	ta ta 🖾 🐿 C11 🗸		0=1 ***Reply *B10+(1-B4)*(End Review	•							
<u> </u>	A	B	C	D	E	F	G	-	I J K I M	N	0	P	Q
1	Example 12							17/1					
2	Example 1		d Forecast		na najaoto	a Experie	lineary		$=B5^{*}(C11 - C10) +$				
3													
4	Alpha =	0.5							(1 - B5)*D10				
5	Beta =	0.3							(1 - D) D 10				
6							/	_					
7					Adjusted	/	Absolute		010 D10				
8	Month		Forecast	Trend	Forecast	Enor	Error	-	=C10 + D10	l			
9	January	37	37.00						010 1 210				
10	February	40	37.00	0.00	37.00-	3.00	3.00						
11	March	41	38.50	0.45	38.95	2.05	2.05						
12	April	37	39.75	0.69	40.44	-3.44	3.44						
13	May	45 50	38.38 41.69	0.07	38.45	6.55 7.27	6.55 7.27		=ABS(B10 – E10)				
14	June July	43	41.69	1.04	42.73 47.82	-4.82	4.82	L					
15	August	43	45.64	0.96	47.82	1.62	1.62						
	September	56	45.71	1.06	46.77	9.23	9.23						
18	October	52	50.86	2.28	53.14	-1.14	1.14	-		-	-		
and the second se	November	55	51.43	1.77	53.20	1.80	1.80						
	December	54	53.21	1.77	54.99	-0.99	0.97		=SUM(F10:F20)				
21	January		53.61	1.36	54.97								
22						21.14-	41.90	1					
23													
24										_			
25	MAD =	3.81											
26	MAPD =		percent										
27	E =	21.14				G22/							

Demand and exponentially smoothed forecast

12-625

Data Analysis option

Data Analysis	2		
Analysis Tools Anova: Two-Factor Without Replication Correlation Covariance Descriptive Statistics Exponential Smoothing F-Test Two-Sample for Variances Fourier Analysis Histogram Moving Average	OK Cancel ∐elp Exponential Smoothi		2
Random Number Generation	Input Input Damping factor:	B9:B20 10.5	OK Cancel Help
	Output options Output Range: New Worksheet Ply: New Workbook	C9:C21	
	Chart Output	Standard Errors	

Computing a Forecast with Seasonal Adjustment

м 🗷	icrosoft Excel	- Exhibit12.	5.Forecastir	ng.XLS			
8	Eile Edit Yiev	w Insert F	ormat <u>T</u> ools	Data Window	w <u>H</u> elp		
	🛩 🖬 📆 d	5 B V 3	6 1 1 1	0 · 0 · 0	- 🔮 E -	21 X1 1	🛃 120% 🔹
1	ta ta 24 😘	御日日	Ca WARep	ly with Changes.	End Review		
	B12 🔹	<i>f</i> x =(1	B8/F8)*E10				
	A	В	С	D	E	F	G
1	Example 1	2.6: Com	outing a Fo	orecast wit	h Season	al Adjustm	ents
2							
3		Dem	and (1,000)s) per Qua	nter		
4	Year	1	2	3	4	Total	
5	2002	12.6	8.6	6.3	17.5	45.0	
6	2003	14.1	10.3	7.5	18.2	50.1	
7	2004	15.3	10.6	8.1	19.6	53.6	
8	Total	42.0	29.5	21.9	55.3	148.7	
9							
10	Line	ar trend lin	e forecast f	or 2005 =	58.17		
11							
12	SF1 =	16.43					
13	SF2 =	11.54					
14	SF3 =	8.57					
15	SF4 =	21.63					
16		í í					

Eile Edit y	jew Insert	Format To	ols <u>D</u> ata	Window H	elp														Ty	pe a question	for help	8
₩							100%	• 29	Arial		- 10	- B		n 📻	a = 5	B 98 %	+.0 .00	i en en la		Α.		
					9 ~ Z T			. Av + 1			100.00		1.	~ -		9 40 70	3 .00 +.0	at- at- [••••		
ta ta 🖂 '				Jhanges Eg	d Review																	
2.000		=E21/(D3-1)		-		-										-	-			-		
A	U	С	D	E	F	G	н	1		J	к	L		М	N	0	P	Q	R	S	Т	1
Exponen	tially Smo	othed Fo	recasts		OM Student -	Example	12.3	-	_				_			-		-				_
to and	No. of dema	- d - a da da da	12	Labe	l periods, inpu	rt demand		_	_				_			_						
Input:	No. of dema Alp		0.30		and smoothin			Ernon	ntial Sm	arthing			19									-
		lid	0.30	aipha value	a. Scroll down	for output		_ Explore	nua su													-
				Value	rə.					F_{14}	$_1 = \alpha D_t$	+ (1 - e	F_t									
				Absolute	Squared				11	1		<u>1</u>	1								1	
Period	Demand		Error	Error	Error																	_
January	37	37.00		0.00				-														-
February	40	37.00	3.00	3.00	9.00 9.61			60						0		—						-
March April	37	37.90 38.83	3.10	3.10 1.83	3.35			50						~	++	-						-
Мау	45	38.28	6.72	6.72	45.14			- 50 -			*		-	-		-						-
June	50	40.30	9.70	9.70	94.15			40	-	1-3	to	-										
July	43	43.21	-0.21	0.21	0.04			30	100		A											
August	47	43.15	3.85	3.85	14.86																	
September	56	44.30	11.70	11.70	136.85			20								emand						
October	52	47.81	4.19	4.19	17.55			10								orecast						-
November December	55 54	49.07 50.85	5.93 3.15	5.93 3.15	35.19 9.94			_							<u> </u>							-
Total	557.00	50.05	49.31	53.39	375.68			0+	2	5 7	. >	o ≥	15	<u>م</u>	5 5	8		-				-
70107	007.00		40.01	55.55	5/ 5.00				ebruary	March	May	June	August	September	October November	December						1
Output:									E T	-			ৰ	epte	0 Mon	0eo						
	MAD	4.85				ND	~ I							0)	-							
	MAPD	0.10			MAD =	$\Sigma D, -$	C.1															
	E	49.31				n																
	Ē	4.48				ala	77						_									
	MSE	37.57			MAPD =	20, -	r,		-													-
						D,			-	_												-
						10.17															7	-
					7	$\frac{\Sigma e_1}{n}$								-				-				-
					<u></u> д =	n						Ú.						-				
						Charles 2	2					.0										
					1.100	$\Sigma(D_t -$	$F_i)^*$															
					MSE =	$\frac{\Sigma(D_t - n)}{n - 1}$	1															
							72			-						-						-
									_													

Regression Methods

Linear regression

 a mathematical technique that relates a dependent variable to an independent variable in the form of a linear equation

Correlation

 a measure of the strength of the relationship between independent and dependent variables

Linear Regression

y = a + bx

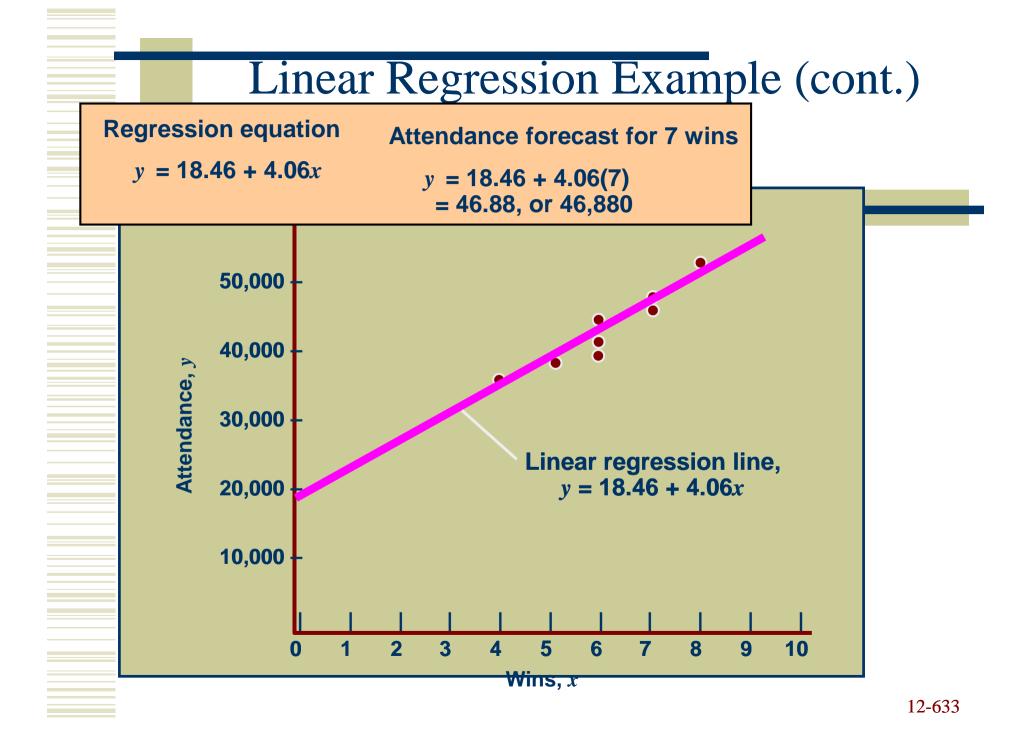
$$- a = y - b x$$

$$\frac{\sum xy - n\overline{x}\overline{y}}{\sum x^2 - n\overline{x}^2} b =$$
where
$$a = \text{intercept}$$

$$b = \text{slope of the line}$$

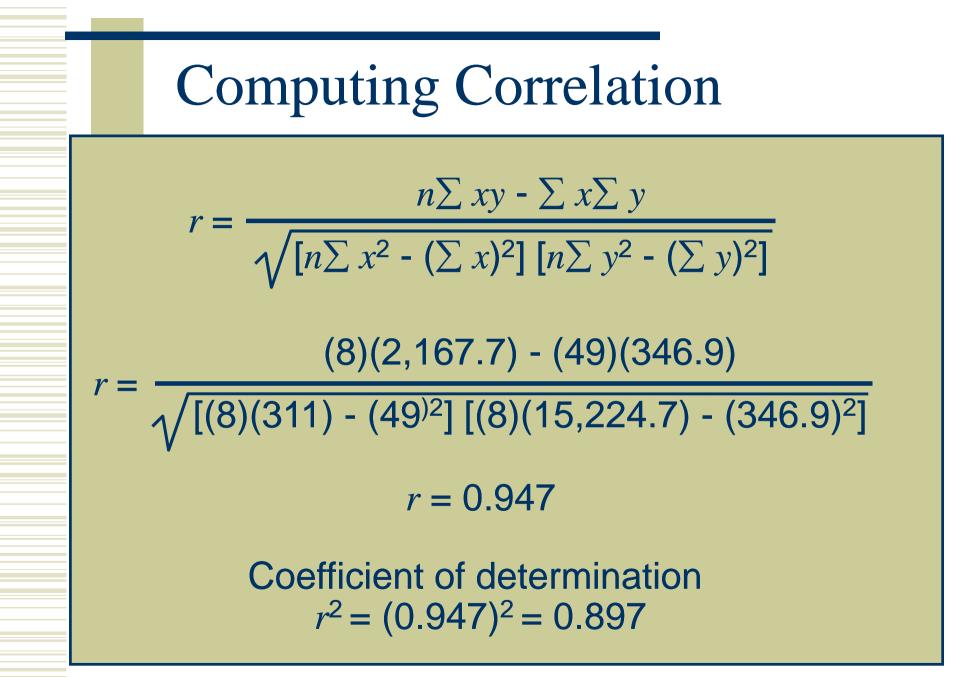
$$- x = \frac{\sum x}{n} = \text{mean of the } x \text{ data}$$

$$- y = \frac{\sum y}{n} = \text{mean of the } y \text{ data}$$


12-630

Linear Regression Example

	x	у	
(WINS)	(ATTENDANCE)	xy	<i>x</i> ²
4	36.3	145.2	16
6	40.1	240.6	36
6	41.2	247.2	36
8	53.0	424.0	64
6	44.0	264.0	36
7	45.6	319.2	49
5	39.0	195.0	25
7	47.5	332.5	49
49	346.7	2167.7	311


Linear Regression Example (cont.)

$\frac{49}{8}$ x =	= 6.125
$\frac{346.9}{8}y =$	= 43.36
$\frac{\sum xy - n\overline{x}\overline{y}^2}{\sum x^2 - n\overline{x}^2}$) =
_	4.00
= 43.36 -	y - bx (4.06)(6.125) 18.46
	$ \frac{\overline{8}}{8} x = \frac{346.9}{8} y = \frac{5}{8} x = \frac{5}{8} $

Correlation and Coefficient of Determination

Correlation, r Measure of strength of relationship Varies between -1.00 and +1.00 Coefficient of determination, r² Percentage of variation in dependent variable resulting from changes in the independent variable

Regression Analysis with Excel

								- B I U ■ ■ ■ 国 \$ % , % % 律律			
1 2 3 4	A	B 12.10: A Linear Reg y (attendance)	C D	E F ast for State Uni	G H versity		JK	=INTERCEPT(B5:B A5:A12)	12,	R	S
5 6 7 8 9 10 11 12 13 14	4 6 8 6 7 5 7 49	36,300 40,100 41,200 53,000 44,000 45,600 39,000 47,500 346,700	y(7	a = 18464.37 b = 4060.92 r = 18464.37 r = 46690.80 r = 0.9478	4060.92 x			=CORREL(B5:B12, A5:A12)			
14											

Regression Analysis with Excel (cont.)

Data Analysis	? 🔀	
Analysis Tools Descriptive Statistics Exponential Smoothing F-Test Two-Sample for Variances Fourier Analysis Histogram Moving Average Random Number Generation Rank and Percentile Regression Sampling	OK Cancel Input Input Y Range: \$B\$5:\$B\$12 Input X Range: \$Labels Constant is Zero Confidence Level: 95 Output options Qutput Range: A15:320 New Worksheet Ply: New Worksheet Ply: New Worksheet Ply: New Workbook Residuals Residuals Standardized Residuals Normal Probability Normal Probability Plots	OK Cancel Help

Regression Analysis with Excel (cont.)

Microsoft Excel - Ext	ibit12,10.Fore	casting.xls													. 7
Elle Edit Yiew In	sert Format Ic	ools <u>D</u> ata <u>W</u> ind	ow Help										Type a que	stion for help	8
D 🛩 🖬 👒 🖨 🗅				100 - 100%	• 🕗 Arial		10 - B /	n = = =	B \$ •	× · *8	.02 .02 .00	el	- A -		
					AN - 1					.00	*** == =	-1			
		Reply with Change	s End Review												
A36 🔻	fx														
A	В	C	D	E	F	G	Н	1	J	K	L	М	N	0	Р
Example 12.10: Sta	ite University A	thletic Departm	ent												
2															
3 x	У		-							-				-	
4 (wins) 5 4	(attendance) 36,300										-		-		
6 6	40,100		1											-	-
7 6	41,200														
8 8	53,000				-						-				
9 6	44,000									1					
0 7	45,600														
1 5	39,000														
2 7	47,500														
3 49	346,700														
4															
5 SUMMARY OUTPU	r i													j i	
6															
7 Regression S	Statistics		ANOVA												
8 Multiple R	0.948			df	SS	MS	F	Significance F							
9 R Square	0.898		Regression	1	179340359.2		53.01120495	0.00034182							
0 Adjusted R Square	0.881		Residual	6	20298390.8	3383065.134									
1 Standard Error	1839.311		Total	7	199638750										
2 Observations	8	-													
13															
								-							
5	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%								
6 Intercept	18464.37	3477.57	5.31	0.00	9955.06	26973.68	9955.06	26973.68							
7 X Variable 1	4060.92	557.75	7.28	0.00	2696.15	5425.69	2696.15	5425.69							

Multiple Regression

Study the relationship of demand to two or more independent variables

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 \dots + \beta_k x_k$$

where
$$\beta_0 = \text{ the intercept}$$

$$\beta_1, \dots, \beta_k = \text{ parameters for the}$$

independent variables
$$x_1, \dots, x_k = \text{ independent variables}$$

Multiple Regression with Excel

			-		Regression			? 🔀
					Input Input <u>Y</u> Rar		C4:C12	ОК
							A4:B12	Cancel
					✓ Labels		Constant is Zero	Help
						nce Level: 9	95 %	
	R Hicrosoft Fyral - Fyhibitt	2 11 Forecasting vie			Output optio		\$F\$365:127	
	B) Ble Edit View Insert Format Iools Data Window Bleb □ 26 🗐 🕄 26 🔃 7 3 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							
	Image: State of the state				C New Workbook			
	2 3 x1	x2 y promotion) (attendance)	tate University Athletic D	epartment		ls dized Residuals	Resi <u>d</u> ual Plots	
	5 4 6 6 7 6 8 8	29,500 36,300 55,700 40,100 71,300 41,200 87,000 53,000			Normal Prol			
	9 6 10 7 11 5	75,000 44,000 72,000 45,600 55,300 39,000			□ <u>N</u> ormal			
	12 7 13 49 14 15 SUMMARY OUTPUT	81,600 47,500 527,400 346,700						
r^2 , the coefficient of determination	16 17 Regression Statis 18 Multiple R	stics 0.949	ANOVA	SS	MS F	Significance F		
or determination	19 R Square 20 Adjusted R Square	0.901 0.861	Regression2Residual5Total7	179864362.	6 89932181.3 22 4 3954877.5			
Regression equation	23 24 25 CA	pefficients Standard Error 9094.424 4139.282	t Stat P-value 4.613 0.006	e Lower 95% 8454.078				
coefficients for x_1 and x_2	27 (wine)	0.037 0.101	2.374 0.064 0.364 0.731	-294.822 -0.224	7416.815 -294. 0.297 -0.2	822 7416.815		

Chapter 13

Inventory Management

Operations Management - 6th Edition

Roberta Russell & Bernard W. Taylor, III

Beni Asllani University of Tennessee at Chattanooga

Lecture Outline

- Elements of Inventory Management
- Inventory Control Systems
- Economic Order Quantity Models
- Quantity Discounts
- Reorder Point
- Order Quantity for a Periodic Inventory System

What Is Inventory?

- Stock of items kept to meet future demand
- Purpose of inventory management
 - how many units to order
 - when to order

Inventory and Supply Chain Management

Bullwhip effect

- demand information is distorted as it moves away from the end-use customer
- higher safety stock inventories to are stored to compensate
- Seasonal or cyclical demand
- Inventory provides independence from vendors
- Take advantage of price discounts
- Inventory provides independence between stages and avoids work stoppages

Inventory and Quality Management in the Supply Chain

- Customers usually perceive quality service as availability of goods they want when they want them
- Inventory must be sufficient to provide high-quality customer service in QM

Types of Inventory

Raw materials

- Purchased parts and supplies
- Work-in-process (partially completed) products (WIP)
- Items being transported
- Tools and equipment

Two Forms of Demand

Dependent

Demand for items used to produce final products

Tires stored at a Goodyear plant are an example of a dependent demand item

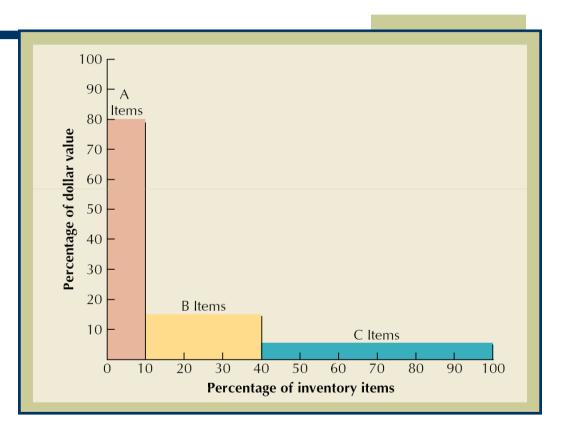
Independent

Demand for items used by external customers

Cars, appliances, computers, and houses are examples of independent demand inventory

Inventory Costs

Carrying cost cost of holding an item in inventory Ordering cost cost of replenishing inventory Shortage cost temporary or permanent loss of sales when demand cannot be met


Inventory Control Systems

Continuous system (fixed-orderquantity) constant amount ordered when inventory declines to predetermined level Periodic system (fixed-timeperiod) order placed for variable amount after fixed passage of time

ABC Classification

- Class A
 - 5 15 % of units
 - 70 80 % of value
- Class B
 - 30 % of units
 - 15 % of value
- Class C
 - 50 60 % of units
 - 5 10 % of value

ABC Classification: Example

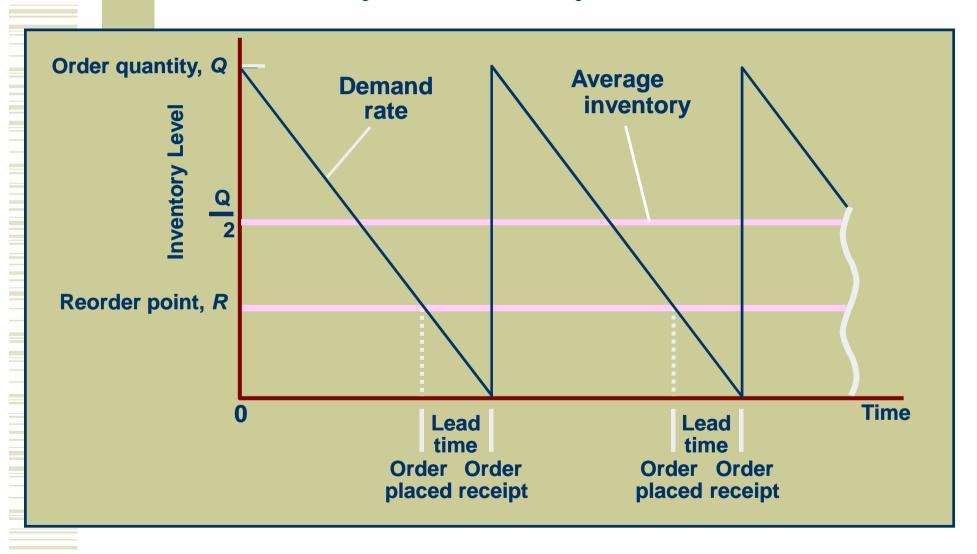
PART	UNIT COST	ANNUAL USAGE
1	\$ 60	90
2	350	40
3	30	130
4	80	60
5	30	100
6	20	180
7	10	170
8	320	50
9	510	60
10	20	120

ABC Classification: Example (cont.)

PART	VALUE	TOTAL % O VALUE	F TOTAL % O QUANTITY		AL MMULATIVE
9	\$30,600	35.9	6.0		6.0
8	16,000	18.7	5.0		11.0
2	14,000	16.4	4.0	A	15.0
-1-	5,400	6.3	9.0		24.0
4	4,800	5.6	6.0	R	30.0
_	CLASS	% ITEMS	OF TOTAL VALUE		OF TOTAL JANTITY
	Α	9, 8, 2	71.0		15.0
	B	1, 4, 3	16.5		25.0
	^	6, 5, 10, 7	12.5		60.0
	С	0, 3, 10, 7			

Economic Order Quantity (EOQ) Models

EOQ


 optimal order quantity that will minimize total inventory costs

- Basic EOQ model
- Production quantity model

Assumptions of Basic EOQ Model

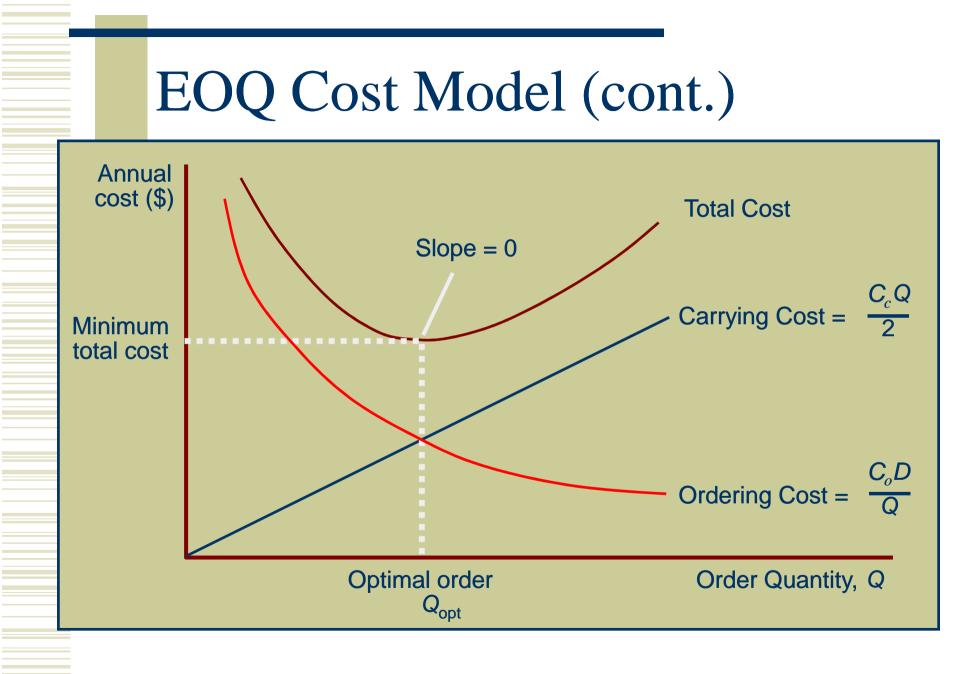
Demand is known with certainty and is constant over time No shortages are allowed Lead time for the receipt of orders is constant Order quantity is received all at once

Inventory Order Cycle

 C_o - cost of placing order C_c - annual per-unit carrying cost *D* - annual demand *Q* - order quantity

Annual ordering cost = $\frac{C_o D}{Q}$

Annual carrying cost = $\frac{C_c Q}{2}$


Total cost =
$$\frac{C_o D}{Q} + \frac{C_c Q}{2}$$

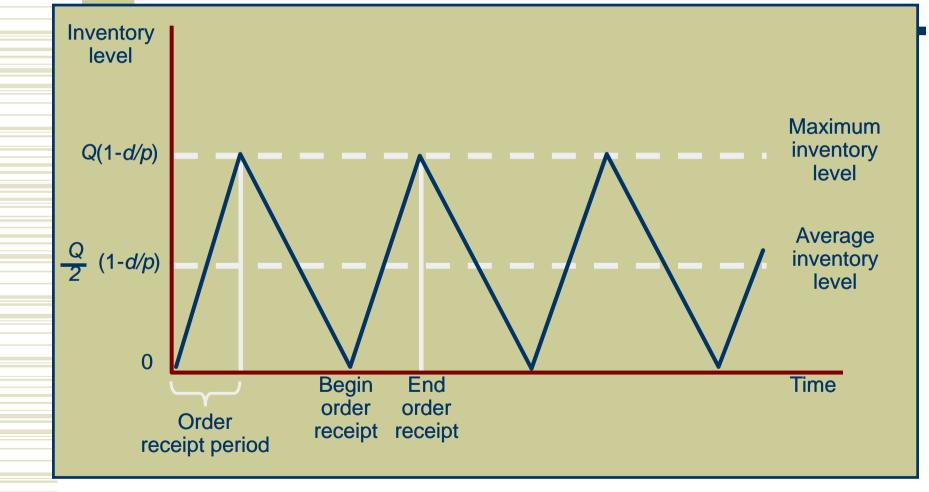
EOQ Cost Model

Deriving Q_{opt} $TC = \frac{C_o D}{Q} + \frac{C_c Q}{2}$ $\frac{\partial \mathrm{TC}}{\partial Q} = -\frac{C_o D}{Q^2} + \frac{C_c}{2}$ $\mathbf{0} = -\frac{C_0 D}{Q^2} + \frac{C_c}{2}$ $2C_oD$ Q_{opt} =

Proving equality of costs at optimal point $\frac{C_o D}{Q} = \frac{C_c Q}{2}$ $Q^2 = \frac{2C_o D}{C_c}$ $2C_oD$ Q_{opt} =

13-657

EOQ Example



$$C_c = \$0.75 \text{ per gallon}$$
 $C_o = \$150$
 $D = 10,000 \text{ gallons}$
 $Q_{opt} = \sqrt{\frac{2C_oD}{C_c}}$
 $TC_{min} = \frac{C_oD}{Q} + \frac{C_cQ}{2}$
 $Q_{opt} = \sqrt{\frac{2(150)(10,000)}{(0.75)}}$
 $TC_{min} = \frac{(150)(10,000)}{2,000} + \frac{(0.75)(2,000)}{2}$
 $Q_{opt} = 2,000 \text{ gallons}$
 $TC_{min} = \$750 + \$750 = \$1,500$

 Order sper year = D/Q_{opt}
 Order cycle time = 311 days/ (D/Q_{opt})
 $= 10,000/2,000$
 $= 311/5$
 $= 5 \text{ orders/year}$
 $= 62.2 \text{ store days}$

Production Quantity Model

- An inventory system in which an order is received gradually, as inventory is simultaneously being depleted
 - AKA non-instantaneous receipt model
 - assumption that Q is received all at once is relaxed
- p daily rate at which an order is received over time, a.k.a. production rate
- *d* daily rate at which inventory is demanded

Production Quantity Model (cont.)

Production Quantity Model (cont.)

d = demand rate *p* = production rate Maximum inventory level = $Q - \frac{Q}{D} d$ $=\left(Q \ 1 \ \frac{d}{p} \right)$ $Q_{\text{opt}} = \sqrt{\frac{2C_o D}{C_c \left(1 - \frac{d}{p}\right)}}$ Average inventory level = $\frac{Q}{2}\left(1 - \frac{d}{p}\right)$ $TC = \frac{C_o D}{Q} + \frac{C_c Q}{2} \left(1 - \frac{d}{p} \right)$

Production Quantity Model: Example

 $C_c = \$0.75$ per gallon $C_o = \$150$ D = 10,000 gallonsd = 10,000/311 = 32.2 gallons per dayp = 150 gallons per day

$$Q_{\text{opt}} = \sqrt{\frac{2C_o D}{C_c \left(1 - \frac{d}{p}\right)}} = \sqrt{\frac{2(150)(10,000)}{0.75 \left(1 - \frac{32.2}{150}\right)}} = 2,256.8 \text{ gallons}$$

$$TC = \frac{C_o D}{Q} + \frac{C_c Q}{2} \left(1 - \frac{d}{P}\right) = \$1,329$$

Production run = $\frac{Q}{p} = \frac{2,256.8}{150} = 15.05$ days per order

Production Quantity Model: Example (cont.)

Number of production runs = $\frac{D}{Q} = \frac{10,000}{2,256.8} = 4.43$ runs/year

Maximum inventory level =
$$Q\left(1 - \frac{d}{p}\right) = 2,256.8\left(1 - \frac{32.2}{150}\right)$$

= 1,772 gallons

13-664

Solution of EOQ Models with Excel

× N	Aicrosoft	Excel -	Exhibit	113.1.Inve	ntory	.xls										
8	Elle Edi	: ⊻jew	Insert	Format	Tools	Data	Window (Help								
D	📽 🖬 I	8	0. 7	× 🖻 🕻	8 -	0 5	• CH = 1	🛔 Σ · 21 3	1 10 2	110% -	2 Arial		- 10 -	B	I	<u>u</u>
1	ta ta l	20	袖 2	501	re Res	sly with Ch	anges E	gd Review								
	D8	•	fx	=SQRT((2	*D5*0	06)/D4)	_									
	A		В	С		D	E	F	G	Н	1	J	K		L	
1	Examp	le 13.2	: The I	Economic	Ord	ler Qua	ntity									
2										-						
3										l 'l h	e opt	imal	ord	er		
4			Carr	ying cost =	= \$	0.75				111	ie opi	mai	oru	CI		
5			Orde	ring cost =	= \$	150					- 0	in a	_11 T	10		
6				Demand	=	10,000)			SIZ	e, <u>Q</u> ,	III CO	en L	10		
7									1	-		100		-		
8				Q =	=	2,000	gallon	IS								
9				TC =	= \$	1,500	Ĩ									
10			Order	per year =	=	5	order	s								
11		C	order cy	/cle time =	-	62.20	days									
12																

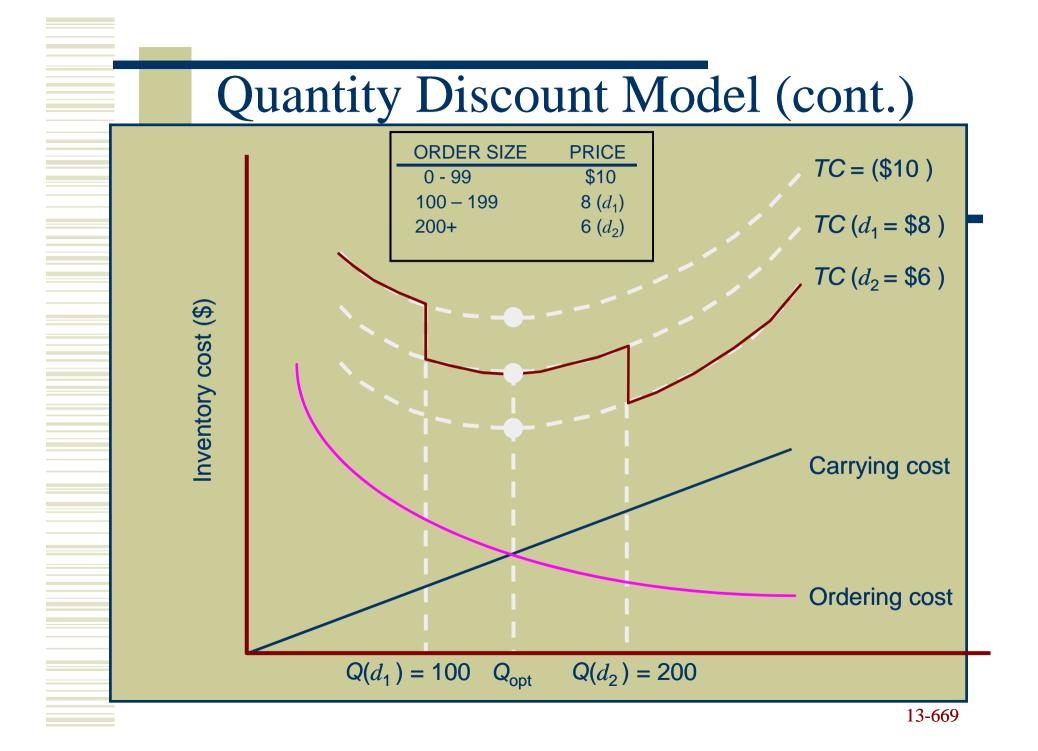
Solution of EOQ Models with Excel (Con't)

7	oft Excel - Exhibit13.2.Inventory.x													6
				_						_	~			
	Edit Yiew Insert Format Iools									en este construit de		e a question fo	r help ·	- 8
	18 6 0 V × 6 6 · <			110%	• [2] • Aria	• 10 • 1	₿ ӏ Ц Ӗ Т	≣ 国 \$ %	,	律律 [🛛 • 🥙 • 🟅	•••		
🇀 🎰 き	8 🖾 🤁 🖄 😨 🗞 🗀 🛯 Yel Reply	with Changes i	End Review 🖕											
D10	✓ f =SQRT(2*D4*D5/	(D3*(1-(D7/D8)))) 🔪											
4	АВС	D E	F	G I	H I	J K	L M	N	0	P	Q	R	S	
1 Exan	ple 13.3: The Production Qua	ntity Model												
2						1 C 1	5 0							
3	Carrying cost = \$ 0.7	75				he formula	a for O							
4	Ordering cost = \$ 15						and the second							_
5	Demand = 10			/		in cell D	010							
6	Annual days = 31		-			III CCII L	10							
1	Daily demand rate = 32		/											_
8	Daily production rate = 15	U							-				-	
9 10	Q = 22	58 41												+
11	TC = \$ 13		-	100 m	W S	11 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	THE REAL PROPERTY OF			10000				+
12	Production run length = 15			(D4*)	D5/D	(D3*)	$D10/2)^{3}$	*(1-(T	7/D	1811				+
13	Number of runs = 4.4				DID	(D) + (D)	D1012	(1 (1						-
14	Maximum inventory = 17			-				1	-					-
15				r										-
				D10*	(1 D	7/00)								
				$D10^{\circ}$	(1-D)	7/D8)								
					X									

Solution of EOQ Models with OM

a second a second second	and the second	Exhibit13.3.5 Insert Form D. ♥ %	and success the same			ALZIA	n al 100	x _ 61	Arial		- 10 - E
							B 49 100	10 • GU •	Mildi		• 10 •
					End Review.	•					
D10	•	The second se	RT((2*D5*D6)/								
A	В	C	D	E	F	G	H	1	J	K	L
a second s	Econom	ic Order Qu	uantity Mo	del							
2					Input co.	sts, demar	nd and day	s per year. E	Excel will ca	liculate the	optimal
3 Input			10.75					number of o			e order
4		g cost, Cc =	\$0.75		cycle tin	ne. Costs a	are graphe	d for various	quantities	ordered.	
5	Orderin	g cost, Co =	\$150.00		-						_
67	Dev	Demand =	10,000		\$3,500	.00				2	
8	Day	s per year =	311			5/837					
9 Outp	ut.				\$3,000	1.00					
10		Qopt =	2,000		\$2,500	00					
	Tata		\$1,500.00						1.50	-	
	1 1013										
11 12			5		\$2,000	.00			/		
12	Orde	rs per year =		days					/	_	dering Cost
	Orde		5	days	\$1,500	.00	-	/	/	_	dering Cost rrying Cost
12 13	Orde	rs per year =	5	days		.00	E	/	/	Ca	
12 13 14 15 16 Grap	Order Order	rs per year = cycle time =	5 62.20		\$1,500 \$1,000	0.00	5	2		Ca	rrying Cost
12 13 14 15 16 <i>Grap</i> 17	Order Order	rs per year = cycle time = Co * D/Q	5 62.20 Cc *Q/2	тс	\$1,500 \$1,000 \$500		5	2	/	Ca	rrying Cost
12 13 14 15 16 <i>Grap</i> 17 18	Order Order h: Q 500	rs per year = cycle time = Co * D/Q \$3,000.00	5 62.20 Cc *Q/2 \$187.50	TC \$3,187.50	\$1,500 \$1,000 \$500		5	<	2		rrying Cost
12 13 14 15 16 <i>Grap</i> 17 18 19	Orde Order h: Q 500 1,000	rs per year = cycle time = Co * D/Q \$3,000.00 \$1,500.00	5 62.20 Cc *Q/2 \$187.50 \$375.00	TC \$3,187.50 \$1,875.00	\$1,500 \$1,000 \$500		1,500	2,500 3,50	10 4,500	Ca	rrying Cost
12 13 14 15 16 <i>Grap</i> 17 18 19 20	Order Order h: Q 500 1,000 1,500	rs per year = cycle time = Co * D/Q \$3,000.00 \$1,500.00 \$1,000.00	5 62.20 Cc *Q/2 \$187.50 \$375.00 \$562.50	TC \$3,187.50 \$1,875.00 \$1,562.50	\$1,500 \$1,000 \$500		1,500	2,500 3,50 Units	4,500		rrying Cost
12 13 14 15 16 <i>Grap</i> 17 18 19 20 21	Order Order 200 1,000 1,500 2,000	rs per year = cycle time = Co * D/Q \$3,000.00 \$1,500.00 \$1,000.00 \$750.00	5 62.20 Cc *Q/2 \$187.50 \$375.00 \$562.50 \$750.00	TC \$3,187.50 \$1,875.00 \$1,562.50 \$1,500.00	\$1,500 \$1,000 \$500			Units			rrying Cost
12 13 14 15 16 <i>Grap</i> 17 18 19 20 21 21 22	Order Order 2000 1,000 1,500 2,000 2,500	rs per year = cycle time = Co * D/Q \$3,000.00 \$1,500.00 \$1,000.00 \$750.00 \$600.00	5 62.20 Cc *Q/2 \$187.50 \$375.00 \$562.50 \$750.00 \$937.50	TC \$3,187.50 \$1,875.00 \$1,562.50 \$1,500.00 \$1,537.50	\$1,500 \$1,000 \$500			Units			rrying Cost
12 13 14 15 16 <i>Grap</i> 17 18 19 20 21 22 23	Order Order 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	rs per year = cycle time = Co * D/Q \$3,000.00 \$1,500.00 \$1,000.00 \$750.00 \$600.00 \$500.00	5 62.20 Cc *Q/2 \$187.50 \$375.00 \$562.50 \$750.00 \$937.50 \$1,125.00	TC \$3,187.50 \$1,875.00 \$1,562.50 \$1,500.00 \$1,537.50 \$1,625.00	\$1,500 \$1,000 \$500			Units			rrying Cost
12 13 14 15 16 <i>Grap</i> 17 18 19 20 21 22 23 24	Order Order 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	rs per year = cycle time = Co * D/Q \$3,000.00 \$1,500.00 \$1,000.00 \$750.00 \$600.00 \$500.00 \$428.57	5 62.20 Cc *Q/2 \$187.50 \$375.00 \$562.50 \$750.00 \$937.50 \$1,125.00 \$1,312.50	TC \$3,187.50 \$1,875.00 \$1,562.50 \$1,500.00 \$1,537.50 \$1,625.00 \$1,741.07	\$1,500 \$1,000 \$500			Units			rrying Cost
12 13 14 15 16 <i>Grap</i> 17 18 19 20 21 22 23 24	Order Order 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	rs per year = cycle time = Co * D/Q \$3,000.00 \$1,500.00 \$1,000.00 \$750.00 \$600.00 \$500.00 \$428.57 \$375.00	5 62.20 Cc *Q/2 \$187.50 \$375.00 \$562.50 \$750.00 \$937.50 \$1,125.00 \$1,312.50 \$1,500.00	TC \$3,187.50 \$1,875.00 \$1,562.50 \$1,500.00 \$1,537.50 \$1,625.00 \$1,741.07 \$1,875.00	\$1,500 \$1,000 \$500						rrying Cost
12 13 14 15 16 <i>Grap</i> 17 18 19 20 21 22 23 24	Order Order 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	rs per year = cycle time = Co * D/Q \$3,000.00 \$1,500.00 \$1,000.00 \$750.00 \$600.00 \$500.00 \$428.57 \$375.00 \$333.33	5 62.20 Cc *Q/2 \$187.50 \$375.00 \$562.50 \$750.00 \$937.50 \$1,125.00 \$1,312.50 \$1,500.00 \$1,687.50	TC \$3,187.50 \$1,875.00 \$1,562.50 \$1,500.00 \$1,537.50 \$1,625.00 \$1,741.07 \$1,875.00 \$2,020.83	\$1,500 \$1,000 \$500			Units			rrying Cost
12 13 14 15 16 Grap 17 18 19 20 21 22 23 24 25 26 27	Order Order 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	rs per year = cycle time = Co * D/Q \$3,000.00 \$1,500.00 \$1,000.00 \$750.00 \$600.00 \$500.00 \$428.57 \$375.00 \$333.33 \$300.00	5 62.20 Cc *Q/2 \$187.50 \$375.00 \$562.50 \$750.00 \$937.50 \$1,125.00 \$1,312.50 \$1,312.50 \$1,500.00 \$1,687.50 \$1,875.00	TC \$3,187.50 \$1,875.00 \$1,562.50 \$1,500.00 \$1,537.50 \$1,625.00 \$1,741.07 \$1,875.00 \$2,020.83 \$2,175.00	\$1,500 \$1,000 \$500			Units			rrying Cost
12 13 14 15 16 <i>Grap</i> 17 18 19 20 21 22 23 24	Order Order 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	rs per year = cycle time = Co * D/Q \$3,000.00 \$1,500.00 \$1,000.00 \$750.00 \$600.00 \$500.00 \$428.57 \$375.00 \$333.33	5 62.20 Cc *Q/2 \$187.50 \$375.00 \$562.50 \$750.00 \$937.50 \$1,125.00 \$1,312.50 \$1,500.00 \$1,687.50	TC \$3,187.50 \$1,875.00 \$1,562.50 \$1,500.00 \$1,537.50 \$1,625.00 \$1,741.07 \$1,875.00 \$2,020.83	\$1,500 \$1,000 \$500			Units			rrying Cost

Quantity Discounts


Price per unit decreases as order quantity increases

$$TC = \frac{C_o D}{Q} + \frac{C_c Q}{2} + PD$$

where

P = per unit price of the item<math>D = annual demand

13-668

Quantity Discount: Example

QUANTITY	PRICE
1 - 49	\$1,400
50 - 89	1,100
90+	900

 $C_o = $2,500$ $C_c = 190 per TV D = 200 TVs per year

$$Q_{\text{opt}} = \sqrt{\frac{2C_o D}{C_c}} = \sqrt{\frac{2(2500)(200)}{190}} = 72.5 \text{ TVs}$$

For Q = 72.5 $TC = \frac{C_o D}{Q_{opt}} + \frac{C_c Q_{opt}}{2} + PD = $233,784$

For Q = 90

$$TC = \frac{C_o D}{Q} + \frac{C_c Q}{2} + PD = $194,105$$

13-670

Quantity-Discount Model Solution with Excel

	Edit View Insert	Format Io	ols <u>D</u> ata y	⊻indow <u>H</u> elp												a question for	help 🔹 🕳
					- 21 X1 10 13 1	10% • 🙄	• Arial		• 10 • I	8 <u>7 U</u>		\$ %	, :00 :00 00÷ 000: €	律律田	• 💩 • 🗛	•••	
				inges End Revie	944												
E8	→ fx A B	=IF(D8>=B8	D D	E	F	G	Н	1	1	K	200	M	N	0	P	Q	R
-	Add Concerns	ntity Dieco		1000	nt Carrying Cost	0.000	E.		J	n	-	M	N	0	۴	Q.	R
LAGI	inpre 10.4. A da	undry Disc	Junt mode	i with consta	in carrying cost									-		-	
	Carn	ring cost =	\$ 190														
		ing cost =						17	- 4 - T		110)	100	* 1 1 1	0.00	010	0 * D	-
		Demand =	200				/	=(<u>)</u> 4*1))/ド	(10)+	-(D3	*E1	0/2)+	FCI)*D'	
							/	1-				1					
					Total Coat												_
	Quantity	Price	Q	Discount Q	Total Cost												
	Quantity 1	1,400	72.55	72.55	\$ 293,784.05												
	Quantity 1 50	1,400 1,100	72.55 72.55	72.55 72.55	\$ 293,784.05 \$ 233,784.05												
	Quantity 1	1,400	72.55	72.55	\$ 293,784.05												
	Quantity 1 50	1,400 1,100	72.55 72.55	72.55 72.55	\$ 293,784.05 \$ 233,784.05)>B1						

Reorder Point

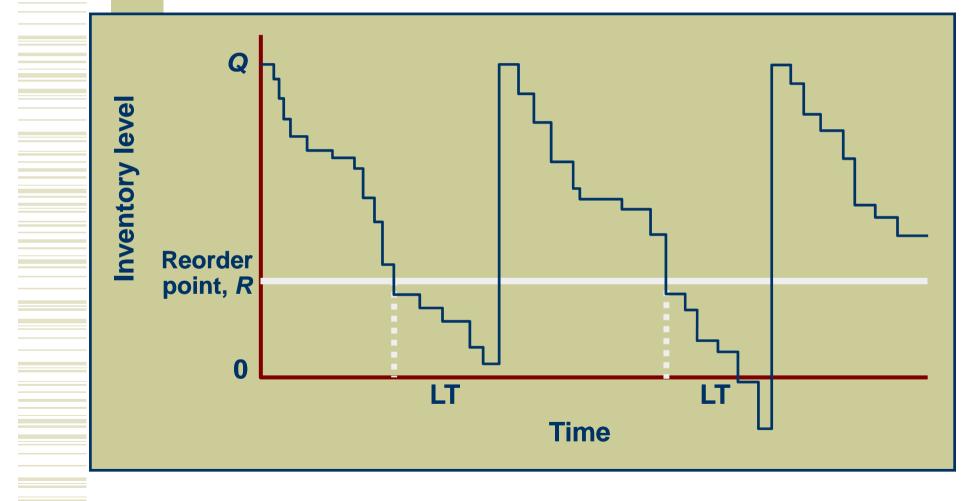
Level of inventory at which a new order is placed

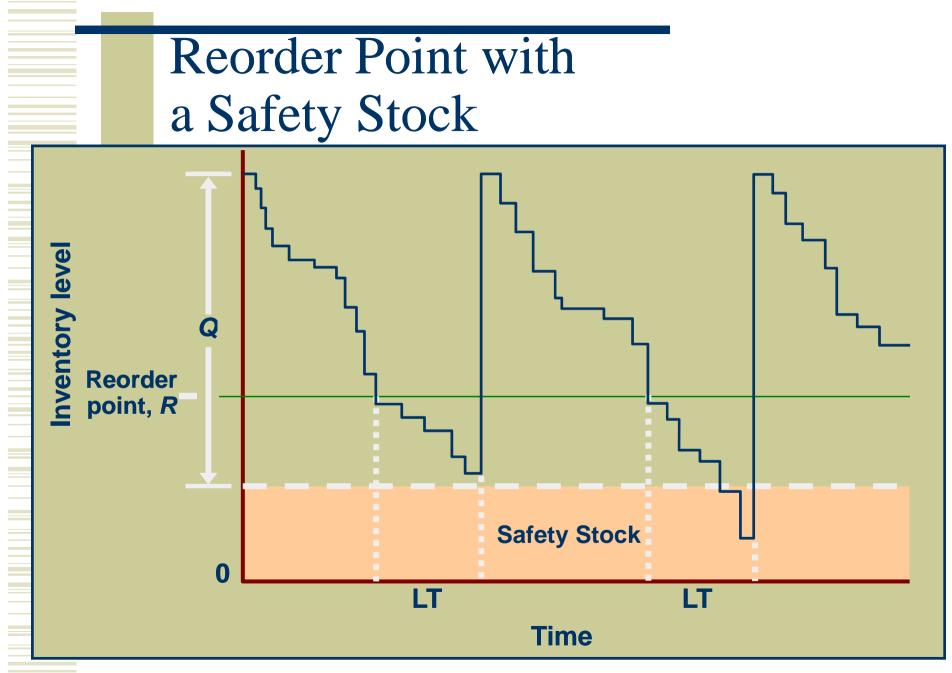
R = dL

where

d = demand rate per period L = lead time

Reorder Point: Example


Demand = 10,000 gallons/year Store open 311 days/year Daily demand = 10,000 / 311 = 32.154 gallons/day Lead time = L = 10 days


R = dL = (32.154)(10) = 321.54 gallons

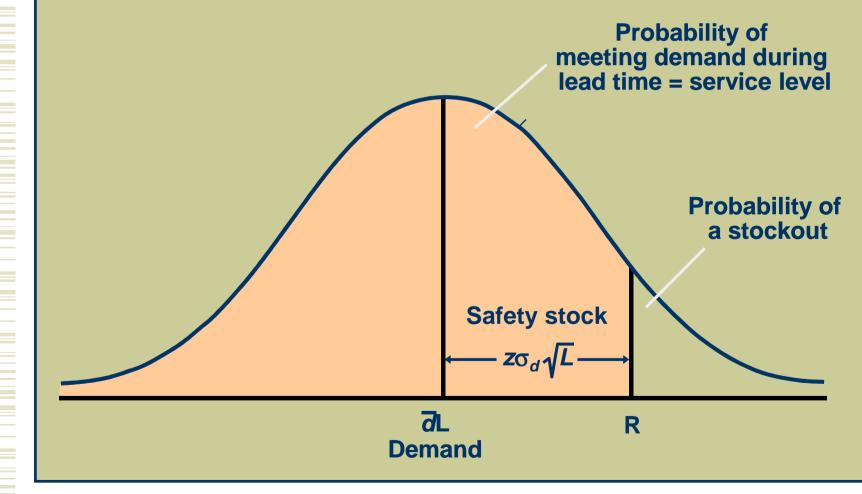
Safety Stocks

Safety stock buffer added to on hand inventory during lead time Stockout an inventory shortage Service level probability that the inventory available during lead time will meet demand

Variable Demand with a Reorder Point

13-676

Reorder Point With Variable Demand


$$R = \overline{d}L + z\sigma_d \sqrt{L}$$

where

$$d =$$
 average daily demand
 $L =$ lead time
 $\sigma_d =$ the standard deviation of daily demand
 $z =$ number of standard deviations
corresponding to the service level
probability
 $z\sigma_d$ $L =$ safety stock

13-677

Reorder Point for a Service Level

Reorder Point for Variable Demand

The paint store wants a reorder point with a 95% service level and a 5% stockout probability

 \overline{d} = 30 gallons per day L = 10 days σ_d = 5 gallons per day

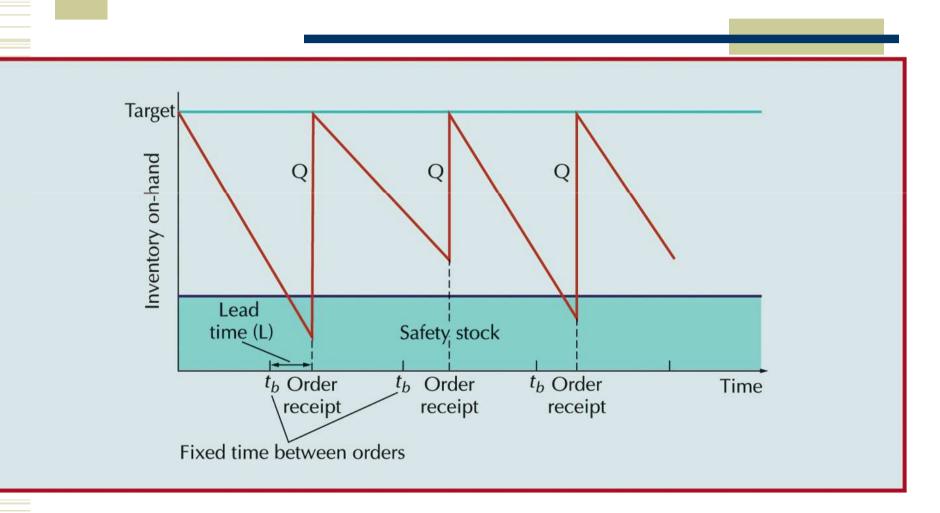
For a 95% service level, z = 1.65

 $R = dL + \sqrt{2}\sigma_d L$ = 30(10) + (1.65)(5)($\sqrt{10}$) = 326.1 gallons

Safety stock = $z\sqrt{\sigma_d}$ L = (1.65)(5)($\sqrt{10}$) = 26.1 gallons

Determining Reorder Point with Excel

	ft Excel - Exhibit13.5.1r dit Vjew Insert Forma		uu Mala											Type a question fo	ur belo	لكار
				1 21 40- 0								* 0 00 L rie	Central International International		Comp. Ser.	- 0
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				120% -	(2) Arial		- 10 -	BIU		\$ % ,	100 + 00 tF	\$F 出•\$	2 · A · -		
ia dia dia	1 2 th 🖄 🖄 🖗 🖉	Reply with Changes	End Review													
E7		5+1.65*E4*SQRT(E5)	-													
	A B	C D	E	F	G	Н	1	J	K	L	M	N	0	P	Q	
1 Exa	mple 13.6: Reorder	Point with Variab	le Demand													
2								-	_							
3	Averag	e daily demand =	30					TL			a too b					
4	St	andard deviation =						Ine	e reor	der p	oint					
5		Lead time =	10							-						
6								torn	nula	in cel	IE/I					
7		R =	326.09													
8																


Order Quantity for a Periodic Inventory System

$$Q = \overline{d}(t_b + L) + z\sigma_d \sqrt{t_b + L} - I$$

where

d = average demand rate $t_b = \text{the fixed time between orders}$ L = lead time $\sigma_d = \text{standard deviation of demand}$ $\overline{z\sigma_d} \quad t_b + L = \text{safety stock}$ I = inventory level

Periodic Inventory System

Fixed-Period Model with Variable Demand

d = 6 packages per day $\sigma_d = 1.2$ packages $t_b = 60$ days L = 5 days I = 8 packages z = 1.65 (for a 95% service level)

$$Q = d(t_b + L) + z_{5_d} - t_b + L - I$$

= (6)(60 + 5) + (1.65)(1.2) $\sqrt{60 + 5} - 8$
= 397.96 packages

Fixed-Period Model with Excel

	■ • ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●			120% - 🖸	🕄 🚬 Arial		• 10 • B	<i>I</i> <u>U</u> ≡	■ ■ 国	\$ % , %	:% € ≢ €	e 🖽 • 💩 •	Δ		
	🏥 🗃 🔁 🌆 🔽 😼 🖓 Reply with Changes E	nd Review	•												
D10	0 ▼ fx =D3*(D4+5)+D7-D8	D	E	F	G	Н		J	K		М	N	0	P	
	ample 13.7: Fixed Period Model with Vari	and the second se	And a state of the		-			0	15	-					-
2							For		for	order					
211	Average demand rate =	6	packages	per day			I FOI	mula	101 (order					
	Time between orders =	60	days			-		\circ .	1	1 D 10					
	Lead time =		days				size.	0.11	ı cel	l D10					
5	Standard deviation of demand =		packages				,	2,							
8	Safety stock =	15.96	packages												
ŝ.	Inventroy in stock =	8	packages												
8															
)	Q =	397.96	packages												
1															

Chapter 13 Supplement

Simulation

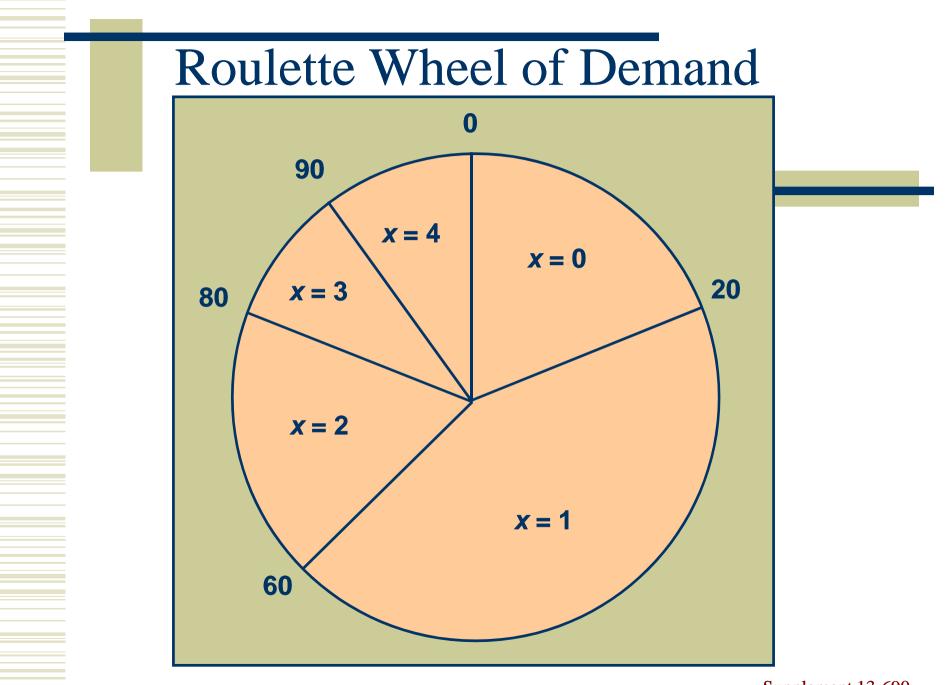
Operations Management

Roberta Russell & Bernard W. Taylor, III

Lecture Outline

- Monte Carlo Simulation
- Computer Simulation with Excel
- Areas of Simulation Application

Simulation


- Mathematical and computer modeling technique for replicating real-world problem situations
- Modeling approach primarily used to analyze probabilistic problems
 - It does not normally provide a solution; instead it provides information that is used to make a decision
- Physical simulation
 - Space flights, wind tunnels, treadmills for tires
- Mathematical-computerized simulation
 - Computer-based replicated models

Monte Carlo Simulation

- Select numbers randomly from a probability distribution
- Use these values to observe how a model performs over time
- Random numbers each have an equal likelihood of being selected at random

Distribution of Demand

OPS DEMANDED ER WEEK, <i>x</i>	FREQUENCY OF DEMAND	PROBABILITY OF DEMAND, <i>P</i> (<i>x</i>)
0	20	0.20
1	40	0.40
2	20	0.20
3	10	0.10
4	10	0.10
		-1.00 -

Supplement 13-690

Generating Demand from Random Numbers

DEMAND,	RANGES OF RANDOM NUMBERS,	
X	r	
0	0-19	
1	20-59 r = 3	9
2	60-79	
3	80-89	
4	90-99	

Random Number Table

39	65	76	45	45	19	90	69	64	61
73	71	23	70	90	65	97	60	12	11
72	18	47	33	84	51	67	47	97	19
75	12	25	69	17	17	95	21	78	58
37	17	79	88	74	63	52	06	34	30

15 Weeks of Demand

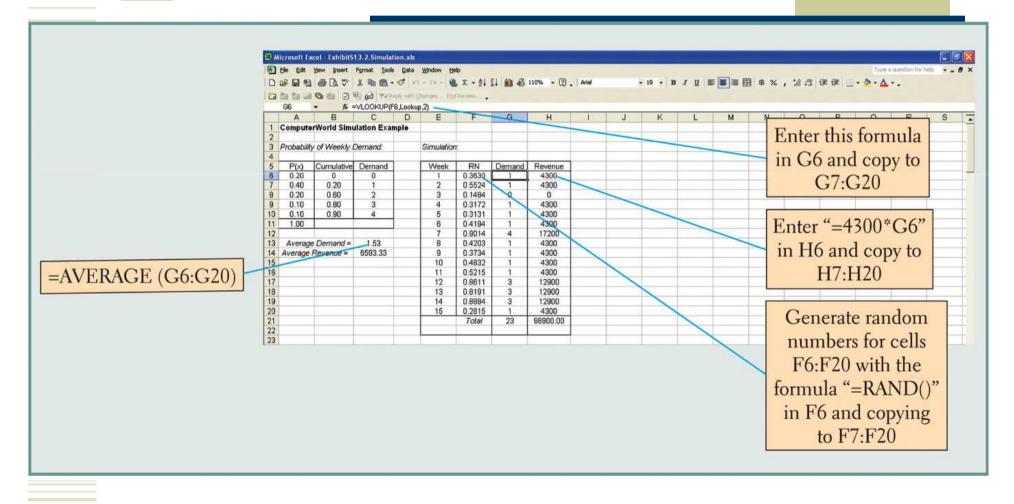
WEEK	r	DEMAND (x)	REVENUE (S)
 1	39	1	4,300	
2	73	2	8,600	
3	72	2	8,600	
 4	75	2	8,600	
 5	37	1	4,300	
 6	02	0	0	
7	87	3	12,900	
8	98	4	17,200	
9	10	0	0	
 10	47	1	4,300	
 11	93	4	17,200	Average demand
12	21	1	4,300	= 31/15
 13	95	4	17,200	= 2.07 laptops/week
14	97	4	17,200	
 15	69	2	8,600	
		$\Sigma = 31$	\$133,300	

Supplement 13-693

Computing Expected Demand

- E(x) = (0.20)(0) + (0.40)(1) + (0.20)(2)+ (0.10)(3) + (0.10)(4)
 - = 1.5 laptops per week

•Difference between 1.5 and 2.07 is due to small number of periods analyzed (only 15 weeks)


•Steady-state result •an average result that remains constant after enough trials

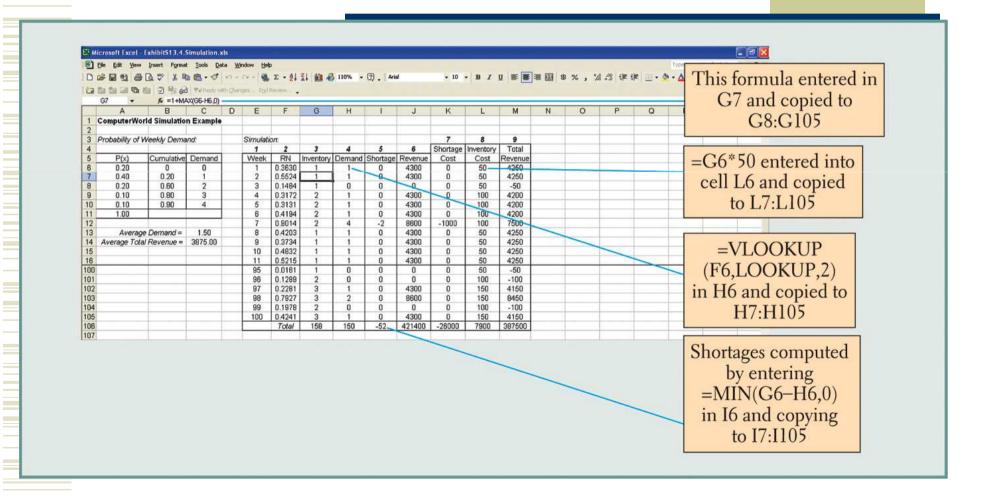
Random Numbers in Excel

2	Microsoft Excel	- ExhibitS13.	1.Simulation.xls
		and and a second se	a state of the sta

	Eile Edit	View Inse	rt F <u>o</u> rmat	<u>T</u> ools <u>D</u> at	a <u>W</u> indow	Help					
	🛩 🖬 험	60:	۵۶ 🗞	B • <i>I</i>	67 × C4 +	🐔 Σ •	21 X1 🕍	100%	• 2.	Arial	
1	ta ta 🖂	Ba (2 1 1	We Reply wit	h @hangas	End Review					
	A3	- ,	£ 0.62992	3723538247							
	A	В	C	D	E	F	G	н	1	J	K
1	100 Rando	m Numbe	rs Generat	ed Using R	AND()						
2											
3	0.6299	0.6922	0.4634	0.0433	0.0755	0.0641	0.3189	0.2599	0.2288	0.7371	
4	0.4191	0.7927	0.6893	0.9192	0.8019	0.4114	0.3443	0.5397	0.8936	0.6944	
5	0.7306	0.4968	0.5271	0.2341	0.3518	0.1129	0.7664	0.5752	0.7673	0.7338	
6	0.8712	0.5170	0.8834	0.9357	0.6817	0.6175	0.9635	0.0216	0.9409	0.3832	
7	0.8718	0.2347	0.3095	0.8006	0.7955	0.0621	0.3317	0.4863	0.4599	0.3011	
8	0.0935	0.0287	0.1110	0.6009	0.1023	0.3886	0.3424	0.2876	0.1904	0.1980	
9	0.2892	0.0149	0.5325	0.4057	0.0385	0.4983	0.8286	0.1043	0.3955	0.1855	
10	0.4016	0.8078	0.0656	0.2995	0.5729	0.5776	0.8871	0.4656	0.9582	0.6215	
11	0.4508	0.3710	0.1533	0.9799	0.4267	0.7611	0.2242	0.8883	0.7665	0.5268	
12	0.6573	0.4849	0.6997	0.4905	0.8855	0.9194	0.5891	0.0643	0.2703	0.9780	
13						0.00129010000000	and a state of the second			o forszál Anirál Snih	

Simulation in Excel

Simulation in Excel (cont.)


2500		The states of	Format Iools		Window He		21 day 20.	110% • 2	Arial	
							AT 80 40	none e up .		
	ta ta 🖂		图 @ YelReci			Fuender				
_	G6	Contraction of the local division of the loc	VLOOKUP(F6,	Construction of the local division of the lo	the second last diversion of the second last					
	A	B	C	D	E	F	G	н	l.	1
1	Compute	rWorld Simu	lation Examp	ple (100	Weeks)					
2										
3	Probabilit	y of Weekly L	Demand:		Simulation	r.				
4					a an h-ar an					
5	P(x)	Cumulative	Demand		Week	RN	Demand	Revenue		
6	0.20	0	0		1	0.3630		4300		
7	0.40	0.20	1		2	0.5524	1	4300		
8	0.20	0.60	2		3	0.1484	0	0		
9	0.10	0.80	3		4	0.3172	1	4300		
10	0.10	0.90	4		5	0.3131	1	4300		
11	1.00				6	0.4194	1	4300		
12		1			7	0.9014	4	17200		
13	Average	e Demand =	1.49		8	0.4203	1	4300		
14	Average	Revenue =	6407.00		9	0.3734	1	4300		
15					10	0.4832	1	4300		
100					95	0.2370	1	4300		
101					96	0.1215	2	8600		
102					97	0.0809	2	8600		
103					98	0.8202	0	0		
104	-				99	0.9290	0	0		
105					100	0.3653	2	8600		
106						Total	149	640700		

Spreadsheet "frozen" at row 16 to show first 10 weeks and last 6

Supplement 13-697

Decision Making with Simulation

Supplement 13-698

Decision Making with Simulation (cont.)

1	<u>Eile E</u> dit <u>V</u> iew	Insert Formal		<u>₩</u> indow											- • [
3		B. * × 4	18.0	C) + Ci +	🐁 Σ · 2	XI 🛍 🖉	110% -	2 . Aria	4	- 10 -	BI		= 🖬 🛚	New formula for two	
2														The resolution interest which is the set of the set of the set	
	G7 -		X(G6-H6,0)-											lantons ordered	
1	A	В	C	DE	F	G	Н	1	J	K	L	M	N	laptops ordered per week.	
1	ComputerWo	ld Simulatio	n Example											por wook	
2				Sim	lation:					· · · · · · · · · · · · · · · · · · ·			_	per week.	
3	Probability of V	Veekly Dema	nd:							7	8	9			_
4				1	2	3	4	5	6	Shortage	Inventory	Total			
5	P(x)	Cumulative	Demand	We			Demand	Shortage		Cost	Cost	Revenue			
6	0.20	0	0	1	0.3630		1	0	4300	0	100	4200			
7	0.40	0.20	1	2	0.5524	0	1	0	4300	0	150	4150			
8	0.20	0.60	2	3	0.1484		0	0	0	0	200	-200			_
9	0.10	0.80	3	4	0.3172		1	0	4300	0	300	4000			
10	0.10	0.90	4	5	0.3131		1	0	4300	0	350	3950			
11	1.00			6	0.4194	-	3	0	12900	0	400	12500			
12		1		7	0.9014		4	0	17200	0	350	16850			_
13		e Demand =	1.52	8	0.4203	G	1	0	4300	0	250	4050			_
4	Average Tota	Revenue =	5107.50	9	0.3734			0	4300	0	300	4000			_
15				1			1	0	4300	0	350	3950			_
16				1			1	0	4300	0	400	3900			_
00				9	And the second s		0	0	0	0	2100	-2100			_
01				9	and an and a second s		0	0	0	0	2200	-2200			
02 03		245 <u></u>		9		46		0	4300	0	2300	2000			
03				9			2	0	8600	0	2350	6250			
				9	and the second sec	47	0	0	0 4300	0	2350 2450	-2350 1850			_
05 06				10	the second se	2857	152	0	653600	0	and the second se	and the second se			
06					Total	2657	152	U	003600	U	142850	510750			_

Areas of Simulation Application

- Waiting Lines/Service
 - Complex systems for which it is difficult to develop analytical formulas
 - Determine how many registers and servers are needed to meet customer demand
- Inventory Management
 - Traditional models make the assumption that customer demand is certain
 - Simulation is widely used to analyze JIT without having to implement it physically

Areas of Simulation Application (cont.)

- Production and Manufacturing Systems
 - Examples: production scheduling, production sequencing, assembly line balancing, plant layout, and plant location analysis
 - Machine breakdowns typically occur according to some probability distributions
- Capital Investment and Budgeting
 - Capital budgeting problems require estimates of cash flows, often resulting from many random variables
 - Simulation has been used to generate values of cash flows, market size, selling price, growth rate, and market share

Areas of Simulation Application (cont.)

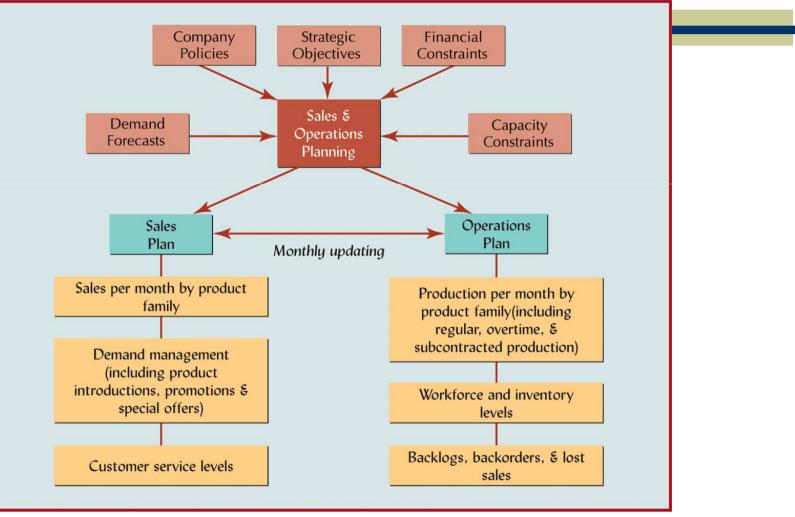
- Logistics
 - Typically include numerous random variables, such as distance, different modes of transport, shipping rates, and schedules to analyze different distribution channels
- Service Operations
 - Examples: police departments, fire departments, post offices, hospitals, court systems, airports
 - Complex operations that no technique except simulation can be employed
- Environmental and Resource Analysis
 - Examples: impact of manufacturing plants, waste-disposal facilities, nuclear power plants, waste and population conditions, feasibility of alternative energy sources

Chapter 14

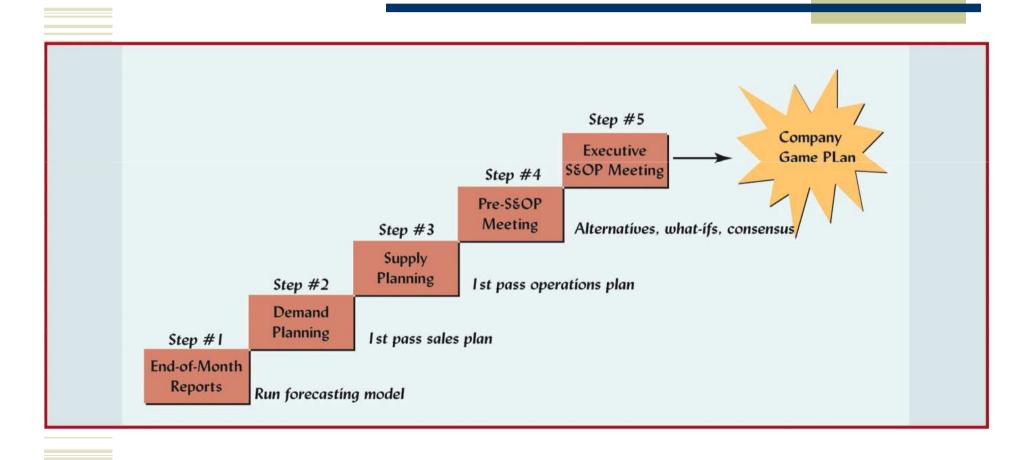
Sales and Operations Planning

Operations Management

Roberta Russell & Bernard W. Taylor, III


Lecture Outline

- The Sales and Operations Planning Process
- Strategies for Adjusting Capacity
- Strategies for Managing Demand
- Quantitative Techniques for Aggregate Planning
- Hierarchical Nature of Planning
- Aggregate Planning for Services


Sales and Operations Planning

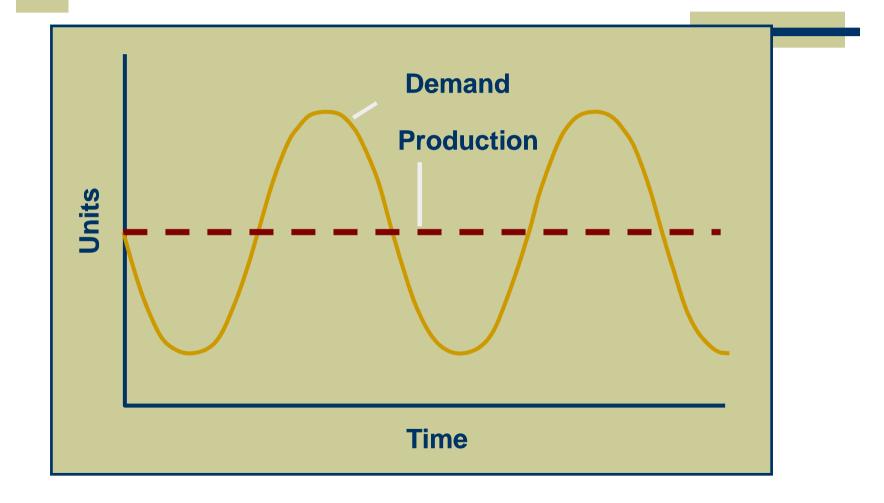
- Determines the resource capacity needed to meet demand over an intermediate time horizon
 - Aggregate refers to sales and operations planning for product lines or families
 - Sales and Operations planning (S&OP) matches supply and demand
- Objectives
 - Establish a company wide game plan for allocating resources
 - Develop an economic strategy for meeting demand

Sales and Operations Planning Process

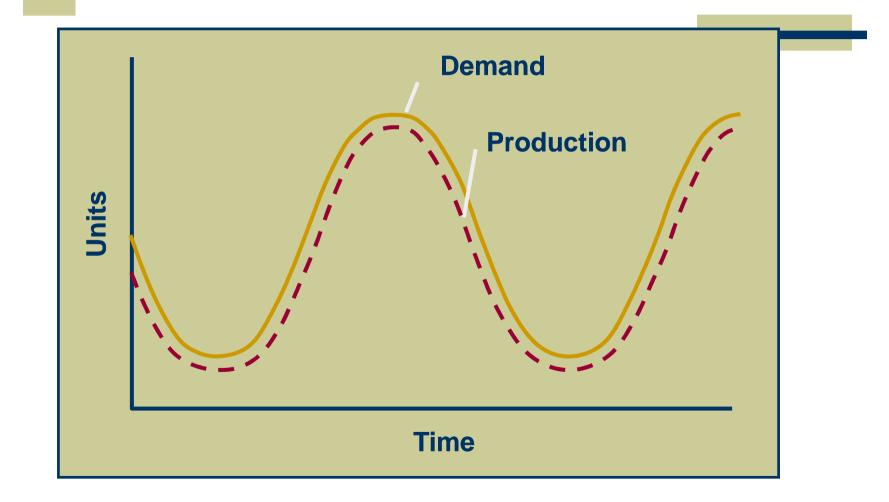
The Monthly S&OP Planning Process

Meeting Demand Strategies

- Adjusting capacity
 - Resources necessary to meet demand are acquired and maintained over the time horizon of the plan
 - Minor variations in demand are handled with overtime or under-time
- Managing demand
 - Proactive demand management

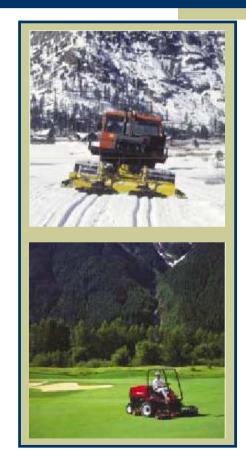

Strategies for Adjusting Capacity

Level production


- Producing at a constant rate and using inventory to absorb fluctuations in demand
- Chase demand
 - Hiring and firing workers to match demand
- Peak demand
 - Maintaining resources for high-demand levels

- Overtime and under-time
 - Increasing or decreasing working hours
- Subcontracting
 - Let outside companies complete the work
- Part-time workers
 - Hiring part time workers to complete the work
- Backordering
 - Providing the service or product at a later time period

Level Production


Chase Demand

14-711

Strategies for Managing Demand

- Shifting demand into other time periods
 - Incentives
 - Sales promotions
 - Advertising campaigns
- Offering products or services with countercyclical demand patterns
- Partnering with suppliers to reduce information distortion along the supply chain

Quantitative Techniques For AP

- Pure Strategies
- Mixed Strategies
- Linear Programming
- Transportation Method
- Other Quantitative Techniques

Pure Strategies

Example:

QUARTER	SALES FORECAST (LB)
Spring	80,000
Summer	50,000
Fall	120,000
Winter	150,000

Hiring cost = \$100 per worker Firing cost = \$500 per worker Inventory carrying cost = \$0.50 pound per quarter Regular production cost per pound = \$2.00 Production per employee = 1,000 pounds per quarter Beginning work force = 100 workers

Level Production Strategy

Level production

 $\frac{(50,000 + 120,000 + 150,000 + 80,000)}{4} = 100,000 \text{ pounds}$

	SALES	PROD	JCTION
QUARTER	FORECAST	PLAN	INVENTORY
Spring	80,000	100,000	20,000
Summer	50,000	100,000	70,000
Fall	120,000	100,000	50,000
Winter	150,000	100,000	0
		400,000	140,000
C	ant of Loval Dradue	tion Ctroto	

Cost of Level Production Strategy $(400,000 \times 2.00) + (140,00 \times 5.0) =$ \$870,000

Chase Demand Strategy

QUARTER	SALES F FORECAST	PRODUCTION PLAN	WORKERS NEEDED	WORKERS HIRED	WORKERS FIRED
Spring	80,000	80,000	80	0	20
Summer	50,000	50,000	50	0	30
Fall	120,000	120,000	120	70	0
Winter	150,000	150,000	150	30	0
				100	50

Cost of Chase Demand Strategy

 $(400,000 \times 2.00) + (100 \times 100) + (50 \times 500) = 835,000$

Level Production with Excel

2	Eile	Edit	⊻iew	In	sert	Form	at <u>T</u> ools	Data	a <u>W</u> indow	Help	Ado <u>b</u> e	PDF				
			9	18	4	ABC	🕄 🔏 🖻	1 🖻	- 🧭 🔊	+ (°	- 😣	Σ	- AZ		400%	- 🕜 🚽 🗛
	F12		-		fx =	F11-	+E12-D12									
	A	۱		E	}		С		P	In	vento	rv :	at	F	G	Н
1											of sur					
2			-			4.4	4		الم الم مالية م		UI SU		1	2	¢070.000	
3			-	Xal	npie	14.	ra - Leve		roduction	<u> </u>				Cost	\$870,000	
4 5			D.	14			100) and Coord		t2 00	-	Fiel		\$500	
5				-	kfor		100		Prod. Cost		\$2.00	+		ng cost		
6	-				wker		1000	_	Inv. Cost		\$0.50	+	Hiri	ng cost	\$100	
7			Be	eg Ir	IV.		0			_						
8										_						
9										_			1			
10							Quarter	•	Demand	Pre	oducti	on	Inv	rentory		
11							Spring		80,000	1	00,00	0	4	20,000		
12							Summe	er	50,000	1	00,00	0		70,000		
13							Fall		120,000	1	00,00	0		50,000		
14							Winter		150,000	1	00,00	0		0		
15							Total		400,000	_	00,00	-	1	40,000		
16															Input by	user.

Chase Demand with Excel

	1										
	🔀 Microsoft	Excel - Exhibit 14.1									
	Elle Edit View Insert Format Tools Data Window Help										
	No. of workers										
	F11		★ =IF(E11-100<0,0,E11-100)				g				
	A	B	С	D		d in sprin	G	Н			
	2										
	3	Example 14.1b - Chase Demand				Cost	\$835,000				
	4					1					
	5	Beg Wkforce	100	Prod. Cost	\$2.00	Firing cost	\$500				
	6	Units/wker	1000	Inv. Cost	\$0.50	Hiring cost	\$100				
	7	Beg Inv.	0								
Workforge requirements	8										
Workforce requirements	9	-			Workers	Workers	Workers				
calculated by system	10	Quarter	Demand	Production	Needed	Hired	Fired				
	11	Spring	80,000	80,000	80	0	20	\			
	12	Summer	50,000	50,000	50	0 70	30				
	13	Fall	120,000	120,000	120 150	30	0				
	14	Winter Total	400,000	400,000	150	100	50				
ſ	IN STATE			400,000		100	50				
	Production input by user;						20 020				
	production = demand					(Cost of a	chase			
	produc	uon – dem		demand = hiring +							
								0			
						firi	ng + pro	oduction			
							y +				

Mixed Strategy

- Combination of Level Production and Chase Demand strategies
- Examples of management policies
 - no more than x% of the workforce can be laid off in one quarter
 - inventory levels cannot exceed x dollars
- Many industries may simply shut down manufacturing during the low demand season and schedule employee vacations during that time

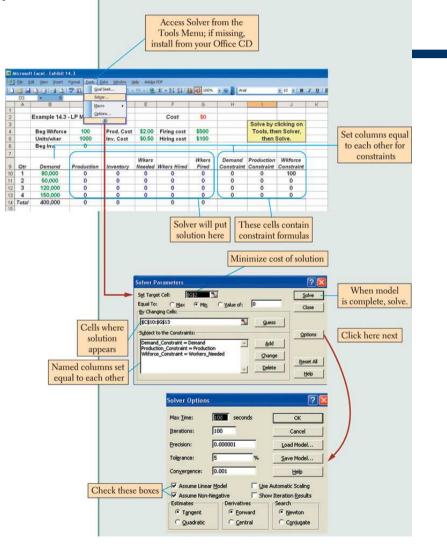
Mixed Strategies with Excel

	2	16 61	3 3 7 1	318 0	a 🖪 • 🞸	17 - (1	- I 😓 E - 1		130%	• • •	Arial	
	G9	-	<i>f</i> ∗ =MAX(G8+D9+	E9+F9-C9,0)							Feb's ending inve
	A	В	С	D	E	F	G	Н	1	J	К	1
1					Example 1	4.2 (a) -	Level Produ	uction				
2		-			•							
3		Input:	Beg. Wkrs	10	Regular	\$10	Hiring	\$1,000		/		
4			Units/wkr	100	Overtime	\$15	Firing	\$500		Cost:	\$146,000	
5			Beg. Inv.	0	Subk	\$25	Inventory	\$1	/			Cost of level proc
6									/			
7		Month	Demand	Reg	от	Subk	Inv	#Wkrs	#Hired	#Fired		
8		Jan	1000	1,000	0	0	0	10	0	0		
9		Feb	400	1,000	0	0	600	10	0	0		
10		Mar	400	1,000	0	0	1,200	10	0	0		
11		Apr	400	1,000	0	0	1,800	10	0	0		
12		May	400	1,000	0	0	2,400	10	0	0		
13		Jun	400	1,000	0	0	3,000	10	0	0		
14		July	500	1,000	0	0	3,500	10	0	0		Excel calculates
15		Aug	500	1,000	0	0	4,000	10	0	0		-
16		Sept	1000	1,000	0	0	4,000	10	0	0		
17		Oct	1500	1,000	0	0	3,500	10	0	0		
18	_	Nov	2500	1,000	0	0	2,000	10	0	0		
19		Dec	3000	1.000	0	0	0	10	0	0		
20		Total	12,000	12,000	0	0	26,000		0	0		
21							D 1	action i				

Mixed Strategies with Excel (cont.)

Microsoft Excel - Exhibit 14.2

	File Ed		Insert Forma	t Tools	Data Window	Help .	Adobe PDF				
				-		3 - 6.5			-	-	
: 🔟			🗐 🖪 🗳 🕯		1 🗗 🗸 👌 -	() v (m v	2 • ž	+ A + 🛄	No.	of work	kers
	19	•	f≈ =MAX(1			d in Fe	1
	A	B	C	D	E	F	G	H	Inte	a m re	eb. K
1					Example 1	4.2 (b) -	Chase Dem	and			
2		Input:	Beg. Wkrs	10	Regular	\$10	Hiring	\$1,000			
4			Units/wkr	100	Overtime	\$15	Firing	\$500		Cost:	\$149,000
5			Beg. Inv.	0	Subk	\$25	Inventory	\$1			
6	1		Ū								
7		Month	Demand	Reg	ОТ	Subk	Inv	#Wkrs	#Hired	#Fired	
8		Jan	1000	1000	0	0	0	10	0	0	
9		Feb	400	400	0	0	0	4	0	6	
10		Mar	400	400	0	0	0	4	0	0	
11		Apr	400	400	0	0	0	4	0	0	
12		May	400	400	0	0	0	4	0	0	
13		Jun	400	400	0	0	0	4	0	0	
14		July	500	500	0	0	0	5	1	0	
15		Aug	500	500	0	0	0	5	0	0	
16		Sept	1000	1000	0	0	0	10	5	0	
17		Oct	1500	1500	0	0	0	15	5	0	
18		Nov	2500	2500	0	0	0	25	10	0	
19		Dec	3000	3000	0	0	0	30	5	0	
20		Total	12,000	12,000	0	0	0		26	6	
21			T	.1		1		1,1			
	4			put by			100 000	ulated			Cost of
			produc	=	demand		by E	Excel		chase	e demand


General Linear Programming (LP) Model

- LP gives an optimal solution, but demand and costs must be linear
- Let
 - W_t = workforce size for period t
 - P_t = units produced in period t
 - I_t = units in inventory at the end of period t
 - F_t =number of workers fired for period t
 - H_t = number of workers hired for period t

LP MODEL

Minimize Z	$Z = \$100 (H_1 + H_2 + H_3 + H_3)$	-/ ₄)
	+ \$500 ($F_1 + F_2 + F_3 +$	<i>F</i> ₄)
	+ \$0.50 $(I_1 + I_2 + I_3 + I_3)$	4)
	+ $(P_1 + P_2 + P_3 + P_3)$	' ₄)
Subj	ect to	
	$P_1 - I_1 = 80,000$	(1)
Demand	$I_1 + P_2 - I_2 = 50,000$	(2)
constraints	$I_2 + P_3 - I_3 = 120,000$	(3)
	$I_3 + P_4 - I_4 = 150,000$	(4)
Production	1000 $W_1 = P_1$	(5)
constraints	1000 $W_2 = P_2$	(6)
	1000 $W_3 = P_3$	(7)
	1000 $W_4 = P_4$	(8)
	$100 + H_1 - F_1 = W_1$	(9)
Work force	$W_1 + H_2 - F_2 = W_2$	(10)
constraints	$W_2 + H_3 - F_3 = W_3$	(11)
	$W_3 + H_4 - F_4 = W_4$	(12)

Setting up the Spreadsheet

The LP Solution

X 1	Aicrosof	t Excel - Exhibit 1+	1.3					Cost o	f optin	al solu	tion
	Eile E				jelp Ado <u>b</u> e						
: 🗅		BBBBB	🏷 🛍 I 🔉 🗈	1. 19 -	(* + 1 2	$\Sigma = \frac{1}{2} \downarrow \frac{1}{4} \downarrow \downarrow$	100%	🔹 🕜 🖕 🗛 Arial		∗ 10 ∗ B	
	133 A	▼ /2	c	D	E	F	G	Н	1		Optimal solution;
1			Ŭ	<u> </u>	-						-
2		Example 14.3	LP Model			Cost	\$832,000				mixture of inventory
3									Solve by o	licking on	
4		Beg Wkforce	100	Prod. Cost	\$2.00	Firing cost	\$500		Tools, the	en Solver,	and workforce variation
5		Units/wker	1000	Inv. Cost	\$0.50	Hiring cost	\$100		then	Solve.	
6		Beg Inv.	0								
7											
		(Wkers		Wkers	Demand	Production	Wkforce	
9	Qtr	Demand	Production	Inventory			Fired		Constraint	Constraint	
10	1	80,000	80,000	0	80	0	20	80,000	80,000	80	
11	2	50,000	80,000	30,000	80	0	0	50,000	80,000	80	
12	3	120,000	90,000	0	90	10	0	120,000	90,000	90	
13	4	150,000	150,000	0	150	60	0	150,000	150,000	150	
14	Total	400,000	400,000	30,000		70	20				
15											

Transportation Method

QUARTER	EXPECTED DEMAND	REGULAR CAPACITY	OVERTIME CAPACITY	SUBCONTRACT CAPACITY
1	900	1000	100	500
2	1500	1200	150	500
3	1600	1300	200	500
4	3000	1300	200	500

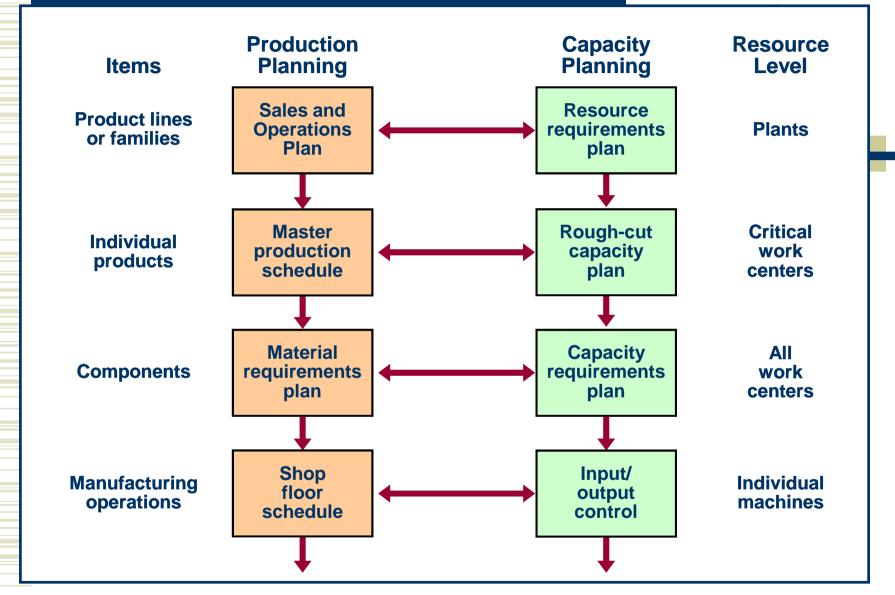
Beginning inventory	300 units
Inventory holding cost per unit per period	\$3
Subcontracting cost per unit	\$28
Overtime production cost per unit	\$25
Regular production cost per unit	\$20

Transportation Tableau

				PERIC	DD (OF USE				
	PERIOD OF PRODUCTION		1	2		3	4	4	Ur Capacity	used Capacity
	Beginning Inventory	30	00	0	4	3		6	9	300
1	Regular	6	00 2	300	23	³ 100 2	6 _	2	9	1000
	Overtime		2	۶ L	2	3 3	¹ 100	3	4	100
	Subcontract		2	^B L	31	1 3	4	3	7	500
2	Regular			1200	20) – [2	3 _	2	6	1200
	Overtime		X	L	2	5	⁸ 150	3	1	150
	Subcontract	$\overline{\mathcal{V}}$		L	2	3 3	¹ 250	3	⁴ 250	500
3	Regular			\backslash	7	1300 2	0 —	2	3	1300
	Overtime		Х	Х	Τ	200	5 —	2	В	200
	Subcontract	$\overline{\mathcal{V}}$			$\overline{\mathbf{A}}$		⁸ 500		1	500
4	Regular				7	$\overline{}$	1300		D	1300
	Overtime		Х	X		X	200	2	5	200
	Subcontract	\checkmark			$\mathbf{}$	$\langle \rangle$	500	2	В	500
	Demand		900	15	00	1600		3000	2	50

Burruss' Production Plan

PERIOD	DEMAND	REGULAR PRODUCTION	OVERTIME	SUB- CONTRACT	END INVENT
1	900	1000	100	0	500
2	1500	1200	150	250	600
3	1600	1300	200	500	1000
4	3000	1300	200	500	(
Total	7000	4800	650	1250	2100


Using Excel for the Transportation Method of Aggregate Planning

3)	<u>File</u> E	dit <u>V</u> iew Insert	Format Tor	ols <u>D</u> ata <u>Wi</u> nd	ow <u>H</u> elp Ado	e PDF				
n			49 81 I X	Bar .		Σ + 41	21 Ma 🛃	100% - 🕢	Arial	
-	T18	 ✓ fx 	- 10.00 UV			-0		Ref (1997)		
	А	В	CI	E F	G H	l J	K	L	M	N
1										
23	Exhib	oit 14.4 - The Tr	ansporta	tion Method	of Aggrega	te Plannii	ng			
4	5			Period	I of Use	L	Units		Unused	
5	Perio	d of Production	1	2	3	4	Produced	Capacity	Capacity	
6		Beg. Inventory	300	0 0 3	0 6	0	a restaura de la constante de la constante de	300	0	
7	1	Regular	600 2					1,000	0	
8	'	Overtime	0 2	5 0 28	0 31	400	4 0	100	100	
9		Subk		8 0 31	0 34	0 3	7 0	500	500	
9	2	Regular	0	1,000 20		200		1,200	0	
11	2	Overtime		150 25		0 3	1 150	1,200	0	
12		Subk		350 28			4 350	500	150	
			-	12			3 1 000			
13	3	Regular	0	0	500		³ 1,300	1,300	0	
14		Overtime	0	0	200	0	° 200	200	0	
15		Subk	0	0	500 28	0		500	0	
16	4	Regular	0	0	0	1,300 2	1,300	1,300	0	
17		Overtime	0	0	0	200 2	5 200	200	0	
18		Subk	0	0	0	500 2		500	0	
19		Units Produced	900	1,500	1,600	3,000	7,000	7,000	750	
20		Demand	900	1,500	1,600	3,000	7,000			
21	į.	Unmet Demand	0	0	0	0		Total Cost =	\$153,550	
22 23										
23 24				Production	Dian					
25				Froduction	Fian		Ending			
26	1	Period	Demand	Reg. Prod.	Overtime	Subk	Inventory			
27	-	1	900	1.000	0 verame	0	400			
28		2	1.500	1,200	150	350	600			
29		3	1.600	1,300	200	500	1.000			
30		4	3,000	1,300	200	500	1,000			
31		Total	7,000	4,800	550	1,350	2,000			
32							-1444			
33			Т	otal Cost =	\$153,550					

Other Quantitative Techniques

- Linear decision rule (LDR)
- Search decision rule (SDR)
- Management coefficients model

Hierarchical Nature of Planning

Disaggregation: process of breaking an aggregate plan into more detailed plans

Collaborative Planning

- Sharing information and synchronizing production across supply chain
- Part of CPFR (collaborative planning, forecasting, and replenishment)
 - involves selecting products to be jointly managed, creating a single forecast of customer demand, and synchronizing production across supply chain

Available-to-Promise (ATP)

- Quantity of items that can be promised to customer
- Difference between planned production and customer orders already received

Capable-to-promise

 quantity of items that can be produced and mad available at a later date

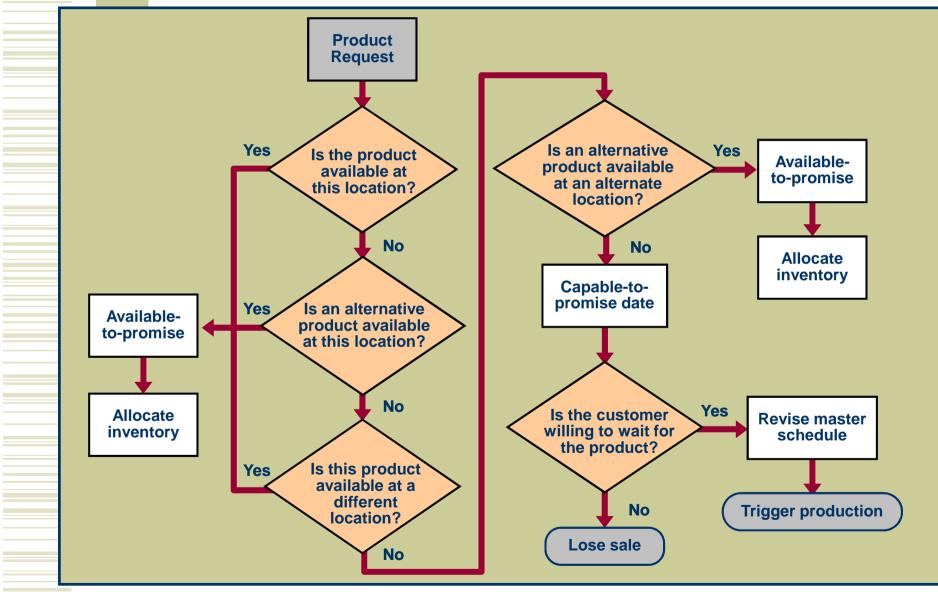
ATP: Example

Aggregate Production Plan				
		Qua	rter	
Product Family	1	2	3	4
Juvenile Bikes	800	1,000	1,500	4,000
Master Production Schedule	April	May	June	Total
	April 150	May 100	June 150	Total 400
Boys 26"		U		
Master Production Schedule Boys 26" Girls 26" Boys 20"	150	100	150	400
Boys 26" Girls 26"	150 100	100 100	150 100	400 300

ATP: Example (cont.)

On Hand = 10	April	May	June	Total
Forecast	50	100	150	300
Sustomer Orders				
Iaster Production Schedule	100	100	100	300

On Hand = 10	April	May	June	Total	
Forecast	50	100	150	300	
Customer Orders	70	110	50	230	
Master Production Schedule	100	100	100	300	
Available-to-Promise					


ATP: Example (cont.)

On Hand = 10	April	May	June	Total
Forecast	50	100	150	300
Customer Orders	70	110	50	230
Master Production Schedule	100	100	100	300
Available-to-Promise	30	0	50	80

Take excess units from April

ATP in April = (10+100) 70=30ATP in May = 100 10 = 10ATP in June = 100 - 50 = 50

Rule Based ATP

Aggregate Planning for Services

Most services cannot be inventoried
 Demand for services is difficult to predict

 Capacity is also difficult to predict

 Service capacity must be provided at the appropriate place and time
 Labor is usually the most constraining resource for services

Yield Management

Type of Problem	Type of Business	Probability of overestimating demand or no-shows, <i>P</i> (<i>N</i> < <i>X</i>)	Optimal probability of demand or no-shows $\frac{C_u}{(C_u + C_o)}$	Cost Description
Overbooking	Hotel, airlines, restaurants	N = number of no-shows X = number of overbooked rooms or seats	$C_o = \text{cost of overbooking}$ $C_u = \text{cost of underbooking}$	Replacement cost Lost profit
Fare Classes		N = number of full-fare tickets that can be sold X = seats reserved for full fare passengers	$C_o = \text{cost of overestimating}$ full fare passengers $C_u = \text{cost of underestimating}$ full fare passengers	Lost full-fare (Full-Fare — discounted fare)

Yield Management (cont.)

Type of Problem	Type of Business	Probability of overestimating demand or no-shows, <i>P</i> (<i>N</i> < <i>X</i>)	Optimal probability of demand or no-shows $\frac{C_u}{(C_u + C_o)}$	Cost Description
Premium seats	Stadiums, theaters	N = no. of premium tickets that can be sold X = seats reserved for premium ticket holders	$C_o = \text{cost of overestimating}$ premium ticket sales $C_u = \text{cost of underestimating}$ premium ticket sales	Lost regular revenue (Premium ticket — regular ticket revenue)
Single Order Quantities	Newspapers, magazines, florists, nurseries, bakeries, sale items	N = number of items that can be sold X = number of items ordered	$C_o = \cos t$ of overestimating demand $C_u = \cos t$ of underestimating demand	(Cost – salvage value) Lost profit

Yield Management: Example

NO-SHOWS	PROBABILITY	<i>P</i> (<i>N</i> < <i>X</i>)	
0	.15	.00	
1	.25	.15	
2	.30	.40	.517
3	.30	.70	

Optimal probability of no-shows

$$\mathsf{P}(n < x) \le \frac{C_u}{C_u + C_o} = \frac{75}{75 + 70} = .517$$

Hotel should be overbooked by two rooms

Chapter 14 Supplement

Linear Programming

Operations Management

Roberta Russell & Bernard W. Taylor, III

Lecture Outline

- Model Formulation
- Graphical Solution Method
- Linear Programming Model Solution
- Solving Linear Programming Problems with Excel
- Sensitivity Analysis

Linear Programming (LP)

A model consisting of linear relationships representing a firm's objective and resource constraints

LP is a mathematical modeling technique used to determine a level of operational activity in order to achieve an objective, subject to restrictions called constraints

Types of LP

Linear Programming Model Type	OM Application
Aggregate Production Planning	Determines the resource capacity needed to meet demand over an immediate time horizon, including units produced, workers hired and fired and inventory. (See Chapter 13.)
Product Mix	Mix of different products to produce that will maximize profit or minimize cost given resource constraints such as material, labor, budget, etc.
Transportation	Logistical flow of items (goods or services) from sources to destinations, for example, truckloads of goods from plants to warehouses. (See Supplement 10.)
Transshipment	Flow of items from sources to destinations with intermediate points, for example shipping from plant to distribution center and then to stores. (See Supplement 10.)

Types of LP (cont.)

Linear Programming Model Type	OM Application		
Assignment	Assigns work to limited resources, called "Loading," for example, assigning jobs or workers to different machines. (See Chapter 16.)		
Multiperiod Scheduling	Schedules regular and overtime production, plus inventory to carry over, to meet demand in future periods.		
Blend	Determines "recipe" requirements, for example, how to blend different petroleum components to produce different grades of gasoline and other petroleum products.		
Diet	Menu of food items that meets nutritional or other requirements, for example, hospital or school cafeteria menus.		
Investment/Capital Budgeting	Financial model that determines amount to invest in different alternatives given return objectives and constraints for risk, diversity, etc., for example, how much to invest in new plant, facilities or equipment.		

Types of LP (cont.)

Linear Programming Model Type	OM Application
Data Envelopment Analysis (DEA)	Compares service units of the same type—banks, hospitals, schools— based on their resources and outputs to see which units are less productive or inefficient.
Shortest Route	Shortest routes from sources to destinations, for example, the shortest highway truck route from coast to coast.
Maximal Flow	Maximizes the amount of flow from sources to destinations, for example, the flow of work-in process through an assembly operation.
Trim-Loss	Determines patterns to cut sheet items to minimize waste, for example, cutting lumber, film, cloth, glass, etc.
Facility Location	Selects facility locations based on constraints such as fixed, operating, and shipping costs, production capacity, etc.
Set Covering	Selection of facilities that can service a set of other facilities, for example, the selection of distribution hubs that will be able to deliver packages to a set of cities.

LP Model Formulation

- Decision variables
 - mathematical symbols representing levels of activity of an operation
- Objective function
 - a linear relationship reflecting the objective of an operation
 - most frequent objective of business firms is to maximize profit
 - most frequent objective of individual operational units (such as a production or packaging department) is to *minimize cost*
- Constraint
 - a linear relationship representing a restriction on decision making

LP Model Formulation (cont.)

Max/min

$$Z = C_1 X_1 + C_2 X_2 + \dots + C_n X_n$$

subject to:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \ (\leq, =, \geq) \ b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \ (\leq, =, \geq) \ b_2 \\ \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n \ (\leq, =, \geq) \ b_n \end{cases}$$

 x_i = decision variables

 $\dot{b_i}$ = constraint levels

 $c_j =$ objective function coefficients $a_{ij} =$ constraint coefficients

LP Model: Example

RESOURCE REQUIREMENTS

	Labor	Clay	Revenue
PRODUCT	(hr/unit)	(lb/unit)	(\$/unit)
Bowl	1	4	40
Mug	2	3	50

There are 40 hours of labor and 120 pounds of clay available each day

Decision variables

 x_1 = number of bowls to produce

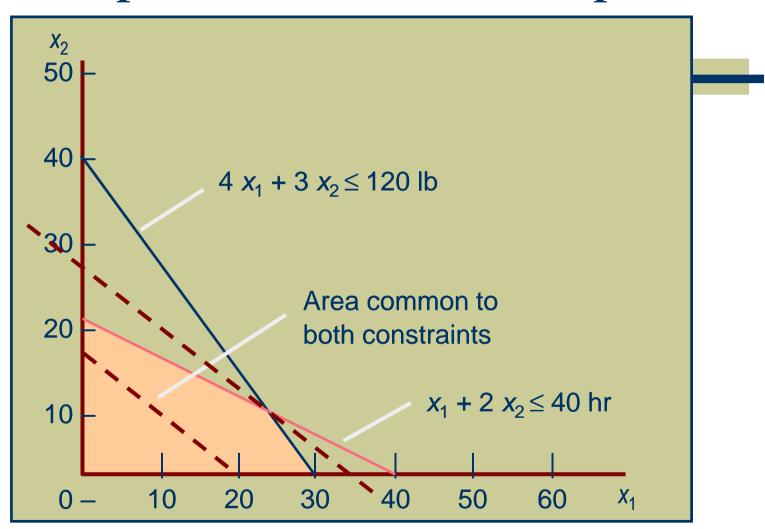
 x_2 = number of mugs to produce

LP Formulation: Example

Maximize $Z = $40 x_1 + 50 x_2$

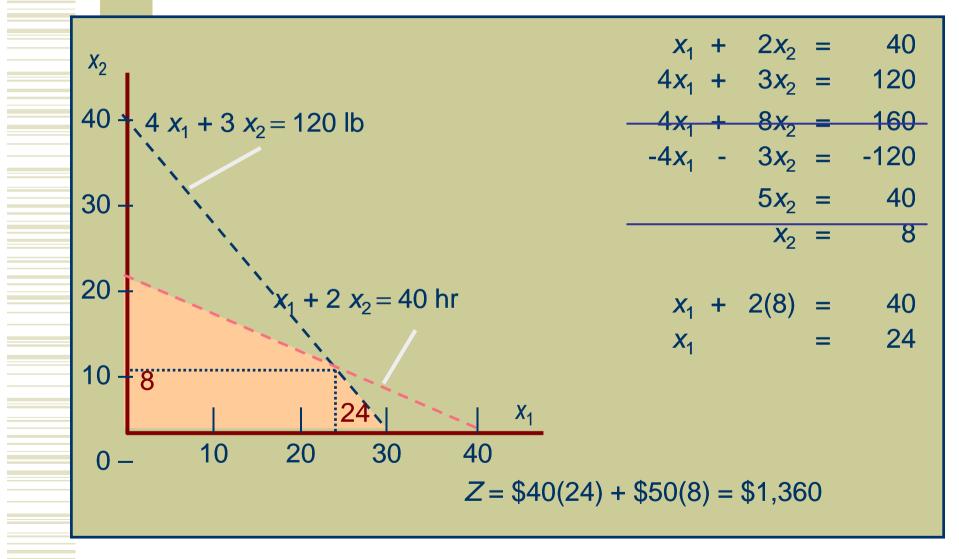
Subject to

 $\begin{array}{rrrr} x_1 &+& 2x_2 &\leq 40 \ \text{hr} & (\text{labor constraint}) \\ 4x_1 &+& 3x_2 &\leq 120 \ \text{lb} & (\text{clay constraint}) \\ & x_1 \,,\, x_2 &\geq 0 \end{array}$


Solution is $x_1 = 24$ bowls Revenue = \$1,360

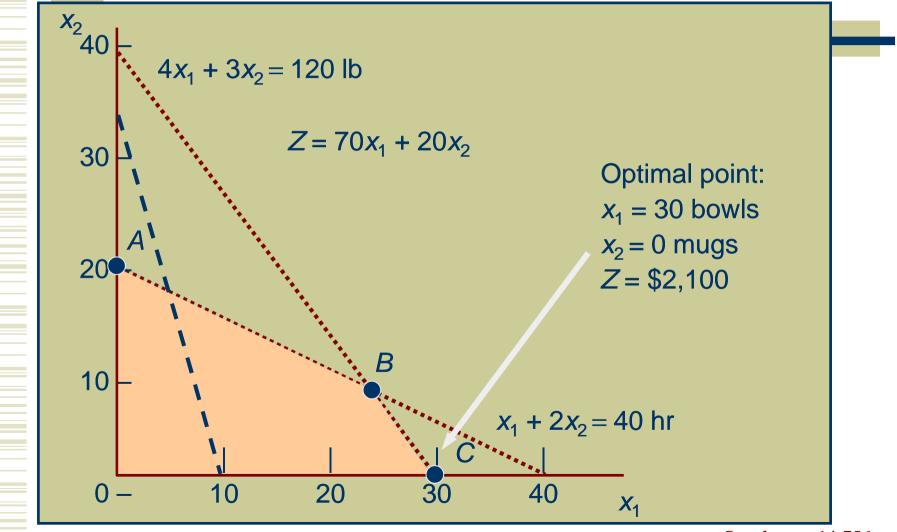
 $x_2 = 8 \text{ mugs}$

Graphical Solution Method


- 1. Plot model constraint on a set of coordinates in a plane
- 2. Identify the feasible solution space on the graph where all constraints are satisfied simultaneously
- 3. Plot objective function to find the point on boundary of this space that maximizes (or minimizes) value of objective function

Graphical Solution: Example

Supplement 14-753



Supplement 14-754

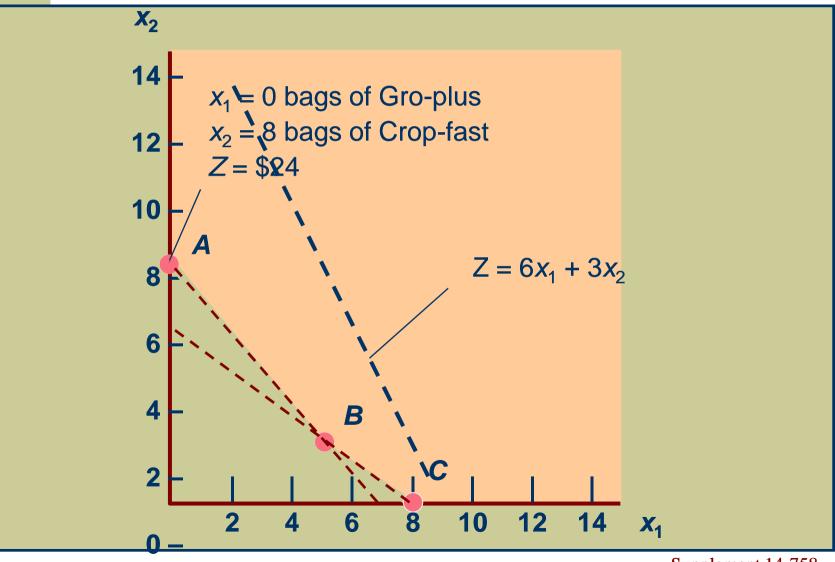
Extreme Corner Points

 $x_1 = 0$ bowls $x_2 = 20$ mugs **X**₂ *x*₁ = 224 bowls *Z* = \$1,000 $x_2 = 8$ mugs **40** *Z* = \$1,360 $x_1 = 30$ bowls $x_2 = 0$ mugs 30 *Z* = \$1,200 A 20 B 10 С 20 **X**₁ 30 **40** 0 – 10

Supplement 14-756

Minimization Problem

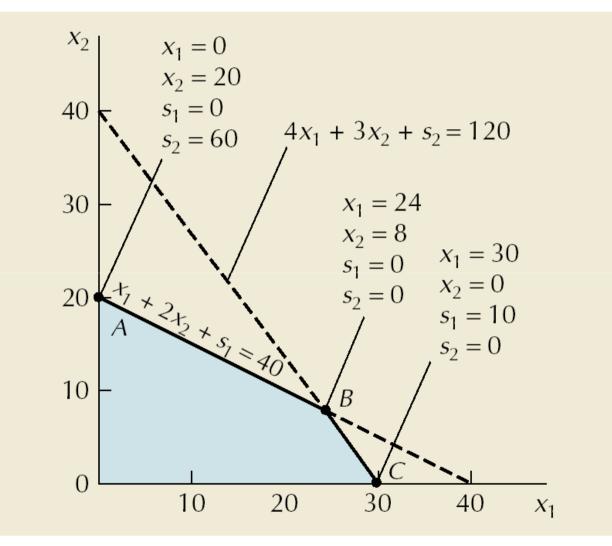
CHEMICAL CONTRIBUTION


Brand	Nitrogen (lb/bag)	Phosphate (lb/bag)
Gro-plus	2	4
Crop-fast	4	3

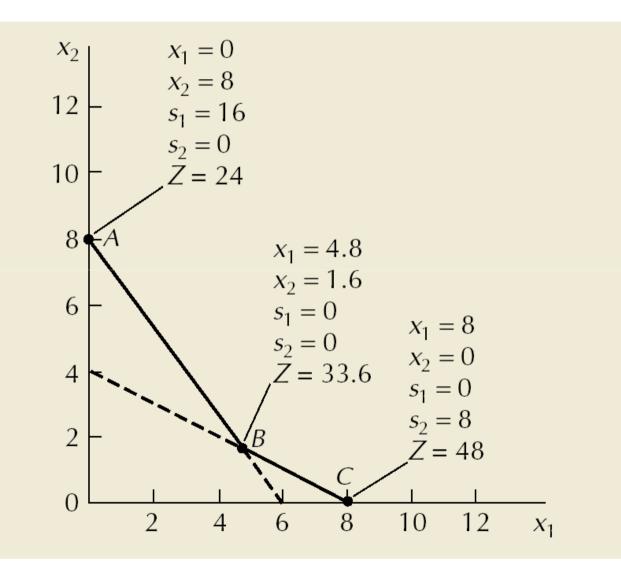
Minimize $Z = $6x_1 + $3x_2$

subject to

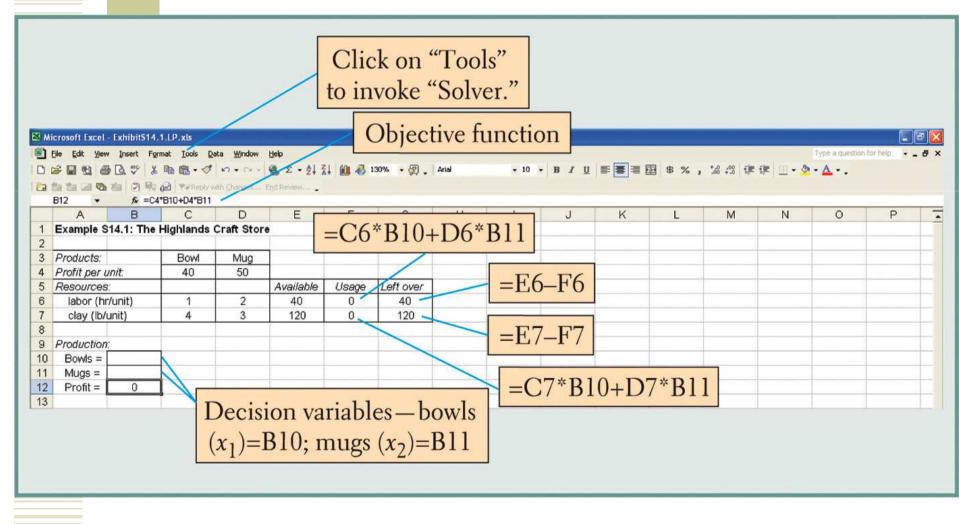
 $2x_1 + 4x_2 \ge 16 \text{ lb of nitrogen}$ $4x_1 + 3x_2 \ge 24 \text{ lb of phosphate}$ $x_1, x_2 \ge 0$


Simplex Method

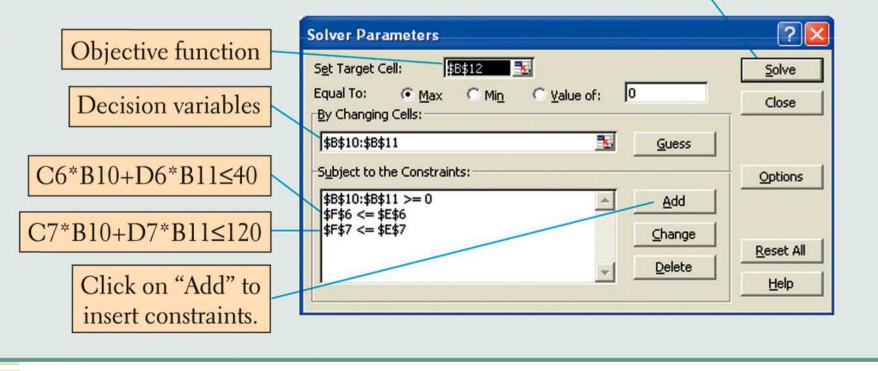
- A mathematical procedure for solving linear programming problems according to a set of steps
- Slack variables added to ≤ constraints to represent unused resources
 - $x_1 + 2x_2 + s_1 = 40$ hours of labor
 - $4x_1 + 3x_2 + s_2 = 120$ lb of clay
- Surplus variables subtracted from ≥ constraints to represent excess above resource requirement. For example,
 - $2x_1 + 4x_2 \ge 16$ is transformed into
 - $2x_1 + 4x_2 s_1 = 16$


 Slack/surplus variables have a 0 coefficient in the objective function

• $Z = $40x_1 + $50x_2 + 0s_1 + 0s_2$

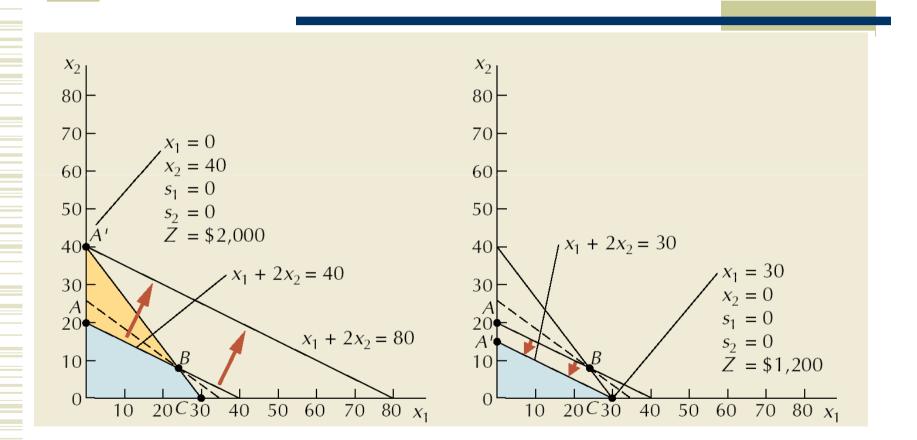

Solution Points with Slack Variables

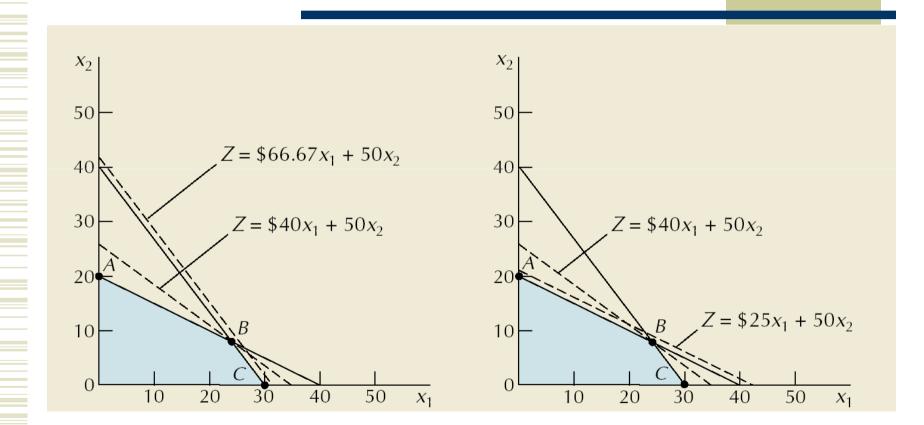
Solution Points with Surplus Variables



Solving LP Problems with Excel

Solving LP Problems with Excel (cont.)


After all parameters and constraints have been input, click on "Solve."


Solving LP Problems with Excel (cont.)

	Eile Edit Yiew	Insert For	rmat <u>T</u> ools <u>D</u> a	ita <u>W</u> indow	Help			
D		B V X	₽ 8 • √	K3 + C4 +	🕵 Σ · 21 Z	1 10 2	30% - 2 .	Arial
	ta ta 🛛 🗞							
Louis?		and and the second	*B10+D4*B11	No. 20 Concernance of Concerns				
	A	B	C	D	E	F	G	Н
1	Example S	14.1: The	Highlands (Craft Stor	e			
2								
3	Products:		Bowl	Mug				
4	Profit per u	nit	40	50				
5	Resources:				Available	Usage	Left over	
6	labor (hr/	/unit)	1	2	40	40	0	
7	clay (lb/L	unit)	4	3	120	120	0	
8								
9	Production:							
10	Bowls =	24						
11	Mugs =	8						
12	Profit =	1360	1					

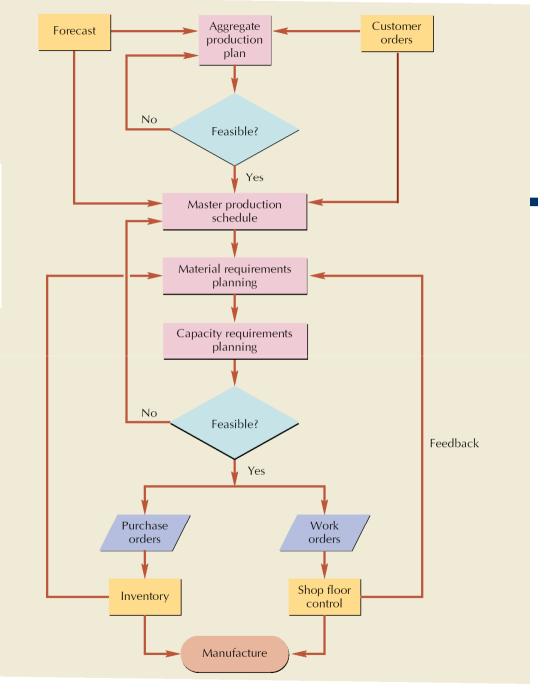
Sensitivity Range for Labor Hours

Sensitivity Range for Bowls

Chapter 15

Resource Planning

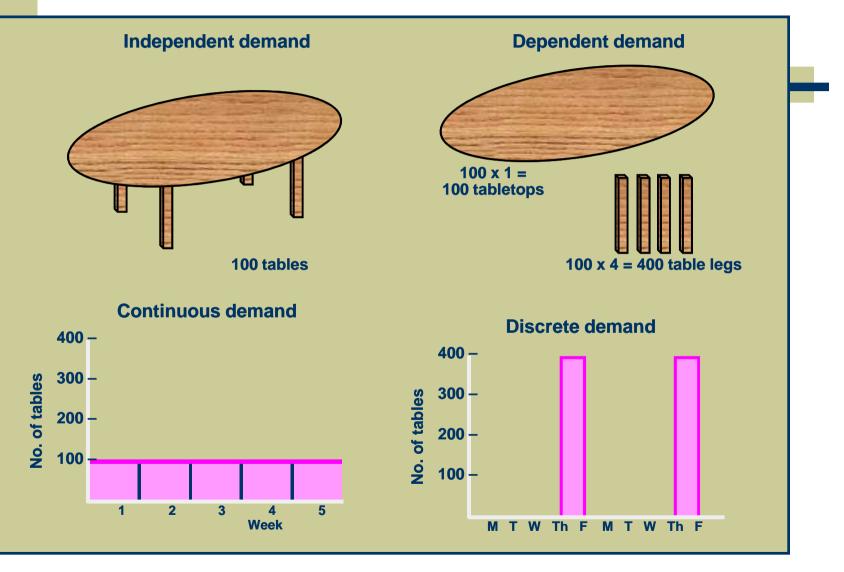
Operations Management


Roberta Russell & Bernard W. Taylor, III

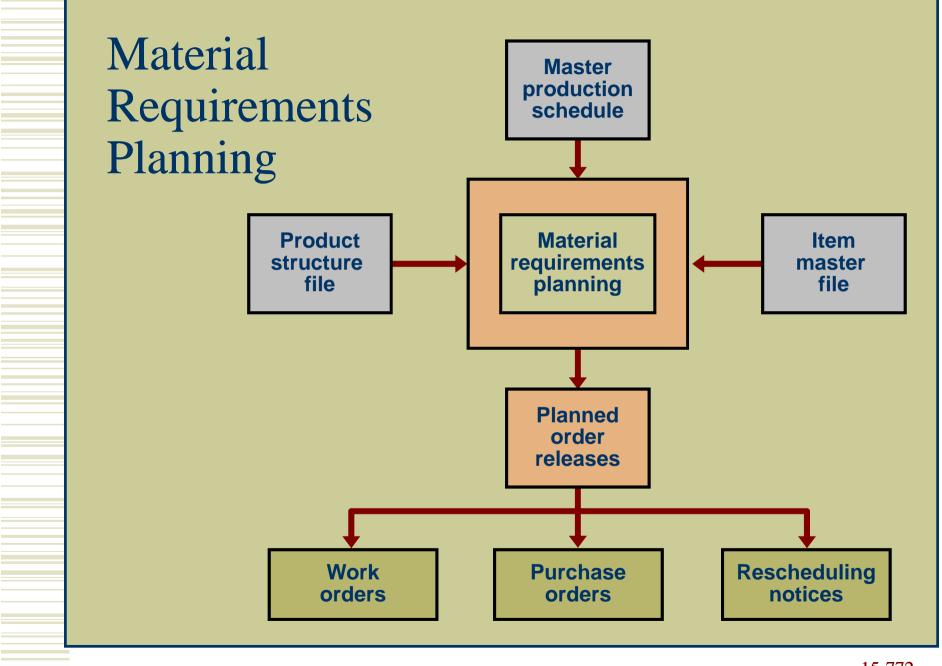
Lecture Outline

- Material Requirements Planning (MRP)
- Capacity Requirements Planning (CRP)
- Enterprise Resource Planning (ERP)
- Customer Relationship Management (CRM)
- Supply Chain Management (SCM)
- Product Lifecycle Management (PLM)

Resource Planning for Manufacturing



15-769


Material Requirements Planning (MRP)

- Computerized inventory control and production planning system
- When to use MRP?
 - Dependent demand items
 - Discrete demand items
 - Complex products
 - Job shop production
 - Assemble-to-order environments

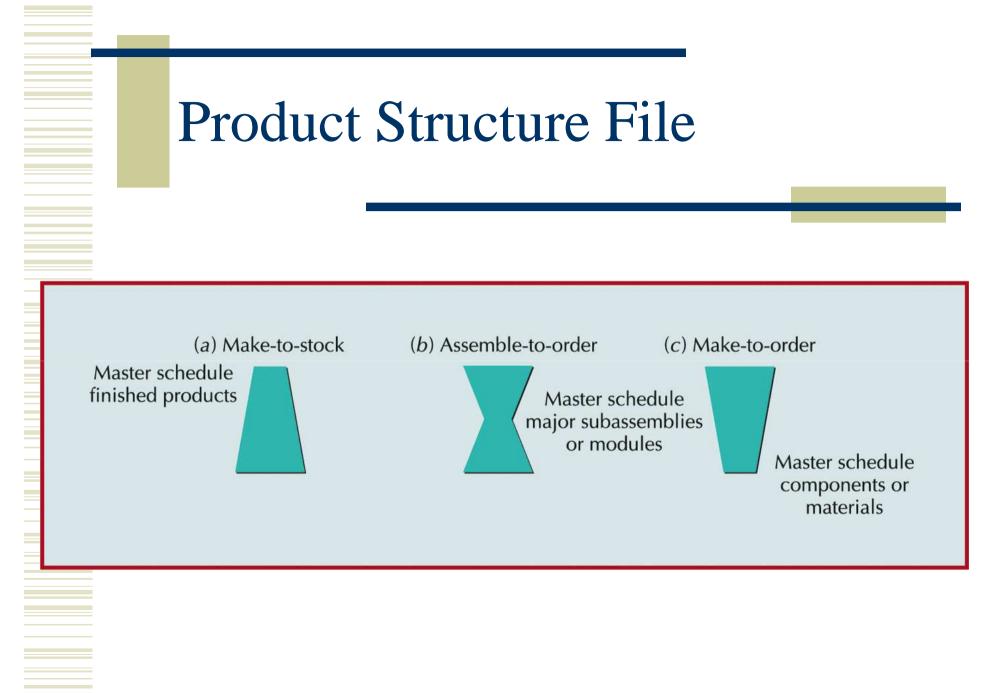
Demand Characteristics

15-771

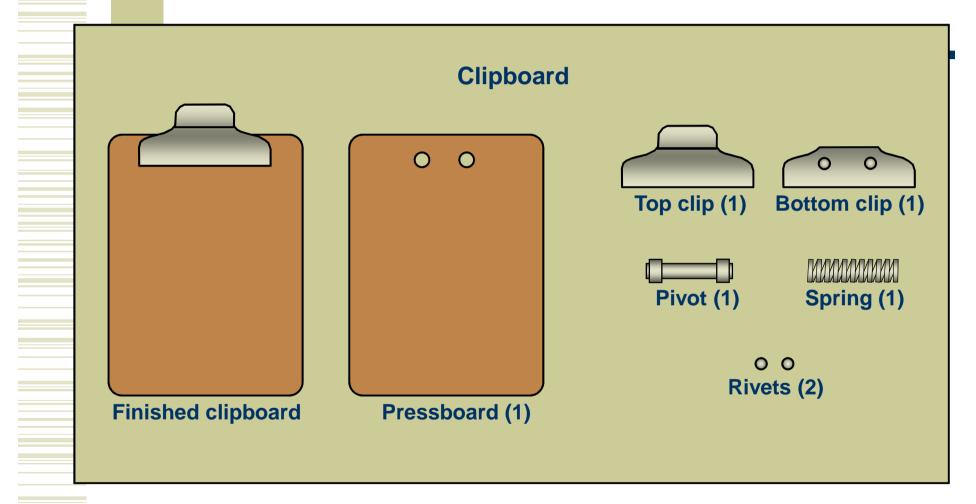
15-772

MRP Inputs and Outputs

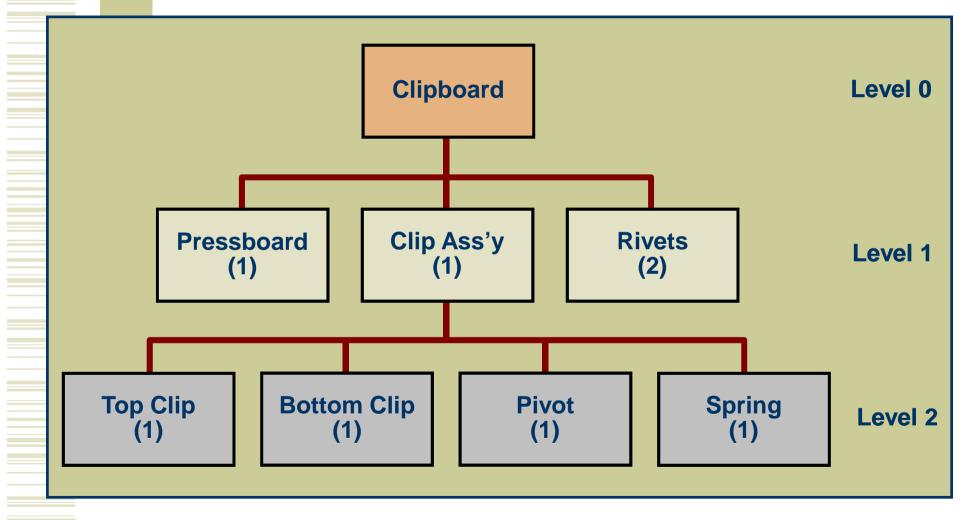
- Inputs
 - Master production schedule
 - Product structure file
 - Item master file


- Outputs
 - Planned order releases
 - Work orders
 - Purchase orders
 - Rescheduling notices

Master Production Schedule


- Drives MRP process with a schedule of finished products
- Quantities represent production not demand
- Quantities may consist of a combination of customer orders and demand forecasts
- Quantities represent what needs to be produced, not what can be produced
- Quantities represent end items that may or may not be finished products

Master Production Schedule (cont.)


			Р	ERIOD)
MPS ITEM	1	2	3	4	5
Pencil Case	125	125	125	125	125
Clipboard	85	95	120	100	100
Lapboard	75	120	47	20	17
Lapdesk	0	50	0	50	0

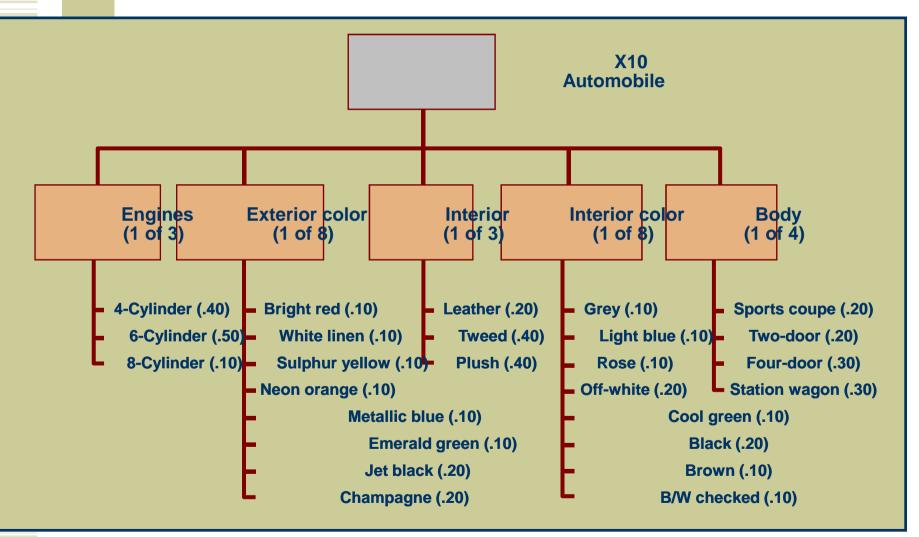
Product Structure

Product Structure Tree

Multilevel Indented BOM

LEVEL	ITEM	UNIT OF MEASURE	QUANTITY
0	Clipboard	ea	1
- 1	Clip Assembly	ea	1
2	Top Clip	ea	1
2	Bottom Clip	ea	1
2	Pivot	ea	1
2	Spring	ea	1
- 1	Rivet	ea	2
- 1	Press Board	ea	1

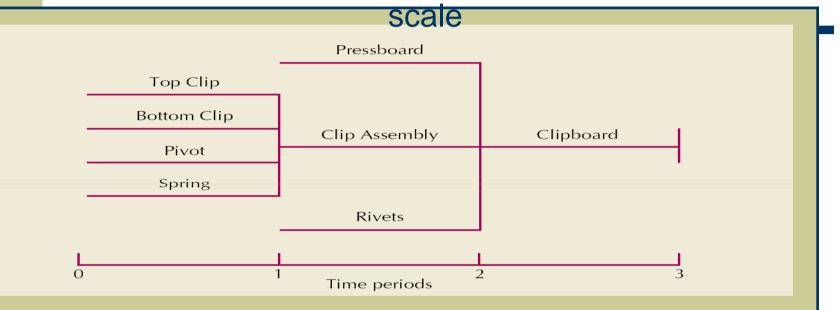
Specialized BOMs


- Phantom bills
 - Transient subassemblies
 - Never stocked
 - Immediately consumed in next stage
- K-bills
 - Group small, loose parts under pseudo-item number
 - Reduces paperwork, processing time, and file space

Specialized BOMs (cont.)

Modular bills

- Product assembled from major subassemblies and customer options
- Modular bill kept for each major subassembly
- Simplifies forecasting and planning
- X10 automobile example
 - 3 x 8 x 3 x 8 x 4 = 2,304 configurations
 - 3 + 8 + 3 + 8 + 4 = 26 modular bills


Modular BOMs

15-782

Time-phased Bills

an assembly chart shown against a time

Forward scheduling: start at today's date and schedule forward to determine the earliest date the job can be finished. If each item takes one period to complete, the clipboards can be finished in three periods

Backward scheduling: start at the due date and schedule backwards to determine when to begin work. If an order for clipboards is due by period three, we should start production now

Item Master File

DESCRIPTIO	N	INVENTORY POL	ICY
ltem	Pressboar	d Lead time	1
ltem no.	7341	Annual demand	5000
Item type	Purch	Holding cost	1
Product/sales class	Comp	Ordering/setup cost	50
Value class	В	Safety stock	0
Buyer/planner	RSR	Reorder point	39
Vendor/drawing	07142	EOQ	316
Phantom code	Ν	Minimum order qty	100
Unit price/cost	1.25	Maximum order qty	500
Pegging	Y	Multiple order qty	1
LLC	1	Policy code	3

Item Master File (cont.)

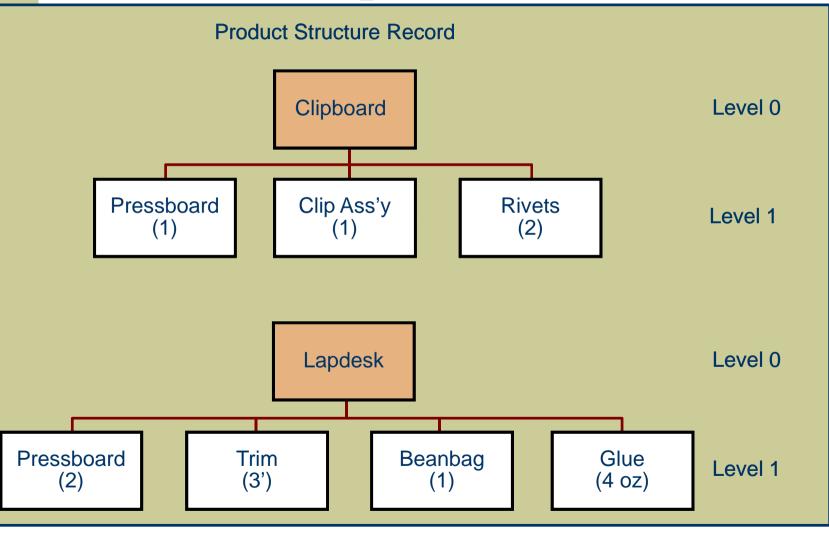
PHYSICAL IN	VENTORY	USAGE/SAL	.ES
On hand	150	YTD usage/sales	1100
Location	W142	MTD usage/sales	75
On order	100	YTD receipts	1200
Allocated	75	MTD receipts	0
Cycle	3	Last receipt	8/25
Last count	9/5	Last issue	10/5
Difference	-2	CODE	S
		Cost acct.	00754
		Routing	00326
		Engr	07142

MRP Processes

- Exploding the bill of material
- Netting out inventory
- Lot sizing
- Time-phasing requirements

- Netting
 - process of subtracting onhand quantities and scheduled receipts from gross requirements to produce net requirements
- Lot sizing
 - determining the quantities in which items are usually made or purchased

MRP Matrix


LLC			Period		
LT	1	2	3	4	5
	Derived fro	m MPS or pi	lanned orde	er releases (of the parent
	С	n order and	scheduled	to be receiv	red
Beg Inv	Anticipa	ted quantity	on hand at	the end of t	he period
	Gross requi	rements net	of inventory	y and sched	luled receipts
		When orde	ers need to l	be received	
	When or	ders need to	be placed i	to be receiv	ed on time
	LT Beg Inv	C Beg Inv Anticipa Gross requi	Derived from MPS or p On order and Beg Inv Anticipated quantity Gross requirements net When orde	Derived from MPS or planned orde On order and scheduled Beg Inv Anticipated quantity on hand at Gross requirements net of inventor When orders need to	Derived from MPS or planned order releases o On order and scheduled to be receiv

MRP: Example

Master Production Schedule

	1	2	3	4	5
Clipboard Lapdesk	85	95	120	100	100
Lapdesk	0	60	0	60	0

	Item Maste	er File	
	CLIPBOARD	LAPDESK	PRESSBOARD
On hand	25	20	150
On order	175 (Period 1)	0	0
	(sch rec	eipt)	
LLC	Ò	0	1
Lot size	L4L	Mult 50	Min 100
Lead time	1	1	1

ITEM: CLIPBOA	RD LLC: 0			PERIOD			
LOT SIZE: L4L	LT: 1	1	2	3	4	5	
Gross Requirements		85	95	120	100	100	
Schedu	lled Receipts			175			
Projected on Hand		25	5				
Net Red	quirements						
Planned Order	Receipts						
Planned O	rder Releases						

ITEM: CLIPBOARD LLC: 0			P	ERIOD	
LOT SIZE: L4L LT: 1	1	2	3	4	5
Gross Requirements		95	120	100	100
Scheduled Receipts			175		
Projected on Hand		1	15		
Net Requirements			0		
Planned Order Receipts					
Planned Order Releases					

(25 + 175) = 200 units available (200 - 85) = 115 on hand at the end of Period 1

ITEM: CLIPBOARD LLC: 0				PERIOD				
LOT SIZE: L4L	LT: 1		1	2	3	4	5	
Gross Requirements		85	95	120	100	100		
Scheduled Receipts					175			
Projected on Hand		25		115	20			
Net Requirements				0	0			
Planned Order	Receipt	S						
Planned Or	der Rele	ases						

115 units available (115 - 85) = 20 on hand at the end of Period 2

ITEM: CLIPBOARD LLC: 0			Р	ERIOD	
LOT SIZE: L4L LT: 1	1	2	3	4	5
Gross Requirements	85	95	120	100	100
Scheduled Receipts			175		
Projected on Hand 25	11	5	20	0	
Net Requirements		0	0 1	00	
Planned Order Receipts				00	
Planned Order Releases	(\bigcirc	100		

20 units available

(20 - 120) = -100 - 100 additional Clipboards are required Order must be placed in Period 2 to be received in Period 3

ITEM: CLIPBOARI	D LLC: 0			P	ERIOD	
LOT SIZE: L4L	LT: 1	1	2	3	4	5
Gross Requirements		85	95	120	100	100
Schedule	d Receipts			175		
Projected on Hand	25	115	20	0	0	0
Net Requirements		0	0	100	100	100
Planned Order Receipts	•			100	100	100
Planned Order Relea	ases		1			00

Following the same logic Gross Requirements in Periods 4 and 5 develop Net Requirements, Planned Order Receipts, and Planned Order Releases

ITEM: LAPDESK LLC: 0			PE	RIOD	
LOT SIZE: MULT 50 LT: 1	1	2	3	4	5
Gross Requirements	0	60	0	60	0
Scheduled Receipts					
Projected on Hand	20)			
Net Requirements					
Planned Order Receipts					
Planned Order Releases					

ITEM: LAPDESK	LLC: 0			PE	RIOD	
LOT SIZE: MULT 50	LT: 1	1	2	3	4	5
Gross Requirements Schedule	d Receipts	0	60	0	60	0
Projected on Hand Net Requirements	20	20	10 0 4	10 0	0 5	0
Planned Order Rece Planned Order Rele		$\bigcirc 5$	5 0	0	0 5	0

Following the same logic, the Lapdesk MRP matrix is completed as shown

ITEM: CLIPBOARD LLC: 0			PE	RIOD	
LOT SIZE: L4L LT: 1	1	2	3	4	5
Planned Order Releases		100	100	100	
ITEM: LAPDESK LLC: 0			PE	RIOD	
LOT SIZE: MULT 50 LT: 1	1	2	3	4	5
Planned Order Releases	50		50		
ITEM: PRESSBOARD LLC: 0			PE	RIOD	
LOT SIZE: MIN 100 LT: 1	1	2	3	4	5
Gross Requirements					
Scheduled Receipts					
Projected on Hand	150				
Net Requirements					
Planned Order Receipts					
Planned Order Releases					

ITEM: CLIPBOAR	D LLC: 0			PE	RIOD	
LOT SIZE: L4L	LT: 1	1	2	3	4	5
Planned Order Release	es		100	100	100	
ITEM: LAPDESK	LLC: 0	x1/		PĘ	RIQD/	<u>x1</u>
LOT SIZE: MULT 50	LT: 1	1	2	3	4	5
Planned Order Release	es	<u> </u>		50		
ITEM: PRESSBOA	ARD LLC: 0X	2	x2(PE	RIOD	/
LOT SIZE: MIN 100	LT: 1	1	2	3 /	4	5
Gross Requirements		100	100	200	100	0
Schedule	d Receipts					
Projected	l on Hand	150)			
Net Requirer	nents					
Planned Ord	er Receipts					
Planned Ord	er Releases					

ITEM: CLIPBOARD LL	.C: 0		PE	RIOD	
LOT SIZE: L4L LT: 1	1	2	3	4	5
Planned Order Releases		100	100	100	
ITEM: LAPDESK LL	.C: 0		PE	RIOD	
LOT SIZE: MULT 50 LT: 1	1	2	3	4	5
Planned Order Releases	5	D	50		
ITEM: PRESSBOARD LL	.C: 0		PE	RIOD	
LOT SIZE: MIN 100 LT: 1	1	2	3	4	5
Gross Requirements	100	100	200	100	0
Scheduled Rece	ipts				
Projected on Hand 150	50	50	0	0	0
Net Requirements		ļ	50 15	0 100)
Planned Order Receipts			15	00100)
Planned Order Releases	\bigcirc		50 0	0	

Plann	ed Order Rej	oort									
	PERIOD										
ITEM	1	2	3	4	5						
Clipboard		100	100	100							
Lapdesk		50	ļ	50							
Pressboard	•	00 1	50 10	00							

Lot Sizing in MRP Systems

- Lot-for-lot ordering policy
- Fixed-size lot ordering policy
 - Minimum order quantities
 - Maximum order quantities
 - Multiple order quantities
 - Economic order quantity
 - Periodic order quantity

Using Excel for MRP Calculations

		⊻iew Insert																		MRP
				K 🖻	· €	1 10 -	CH + 🦉	$\Sigma - \frac{1}{2}$	ZI 🛍	1	.00% - ?	•								
_	S47 A	✓ fx		D	E	F	C	Н	1	J	К	L	M	N	0	P	Q	R	S	Т
1	A	D	U.	U	E	Г	0	п		J	n	L.	IAI	IN	0	F	G	п	3	
2	Examp	le 14.1 - S	chool	Mate	Prod	icts				-										
3	Examp	10 14.1 0		Index		1010				-										
4	INPUT		-	-						-	CALCUL	ATIONS								
5				1							Cric COL									
6	Master P	roduction S	chedul	e							Item:	Clipb		LLC:	0			Period		
7											Lot Size:			LT:	1	1	2	3	4	5
	Item no.		em		1	2	3	4	5	-	Gross Re					85	95	120	100	100
0	1	Clipboar			85	95 60	120	100 60	100	-	Schedule Projected				25	175 115	0 20	0	0	0
1	4	Lapuesk		1	0	00	0	00	U	-	Net Requi				25	0	20	100	100	100
12	Schedule	ed Receipts									Planned (Ū	0	100	100	100
13											Planned (0	100	100	100	0
14	Item no.		em		1	2	3	4	5											
5	1	Clipboar			175					-					-				-	
6 7	2	Lapdesk Pressboa		_					-	-	Item: Lot Size:	Lapd		LLC:	1	1	2	Period 3	4	5
8	3	FIESSING	alu	1	· · · · · ·	-			-	-	Gross Re			LI.		0	60	j 0	60	0
9	Item Mas	ter File		1							Schedule					Ő	0	1 0	0	T O
20											Projected	on Han	d		20	20	10	10	0	0
21		lten		LLC		Lot		On Hand			Net Requi					0	40	0	50	0
2	1	Clipboar		0	1	L4L	1	25		-	Planned (0	50	0	50	0
3	2	Lapdesk Pressboa		0	1	Mult Min	50 100	20		-	Planned (Jrder Re	eleases			50	0	50	0	0
5	3	FIESSDU	aru			min	100	150		-										
	Product	Structure Fi	ile	1							Item:	Press	board	LLC:	0			Period		
27											Lot Size:			LT:	1	1	2	3	4	5
	Level	Item			Qty*	-	_			-	Gross Re					100	100	200	100	0
29 30	0	Clipboard		1	1	-				-	Schedule Projected				150	0 50	0 50	0	0	0
31		Lapdesk	u	2						-	Net Requi				150	0	50	150	100	
32		Pressboar	d	3	2	1					Planned (0	100	150	100	0
33			1								Planned (100	150	100	0	0
	' quantity p	er next level	of asse	mbly																
35	_		-	-						-	OUTDUT	_			-				-	
36 37			-	-							OUTPUT									
38			-	+						-	Planned	Order R	eport					Period		
39				1												1	2	3	4	5
40														Clipb		0	100	100	100	0
41														Lapo		50	0	50	0	0
42														Press	noord	100	150	100	0	0

Advanced Lot Sizing Rules: L4L

Period	1	2	3	4	5
Gross Requirements	30	50	20	10	40

Item: Rod	LLC: 0			Period		
Lot size: L4L	LT: 1	1	2	3	4	5
Gross Requirements		30	50	20	10	40
Scheduled Receipts						
Projected on hand	30	0	0	0	0	0
Net Requirements			50	20	10	40
Planned Order Receipts			50	20	10	40
Planned Order Releases		50	20	10	40	

Total cost of $L4L = (4 \times 60) + (0 \times 1) = 240$

Advanced Lot Sizing Rules: EOQ

$$EOQ = \sqrt{\frac{2(30)(60)}{1}} = 60$$
 minimum order quantity

Item: Rod	LLC: 0			Period		
Lot size: EOQ 60	LT: 1	1	2	3	4	5
Gross Requirements		30	50	20	10	40
Scheduled Receipts						
Projected on hand	30	0	10	50	40	0
Net Requirements			50	10		
Planned Order Receipts			60	60		
Planned Order Releases		60	60			

Total cost of EOQ = (2 X \$60) + [(10 + 50 + 40) X \$1)] = \$220

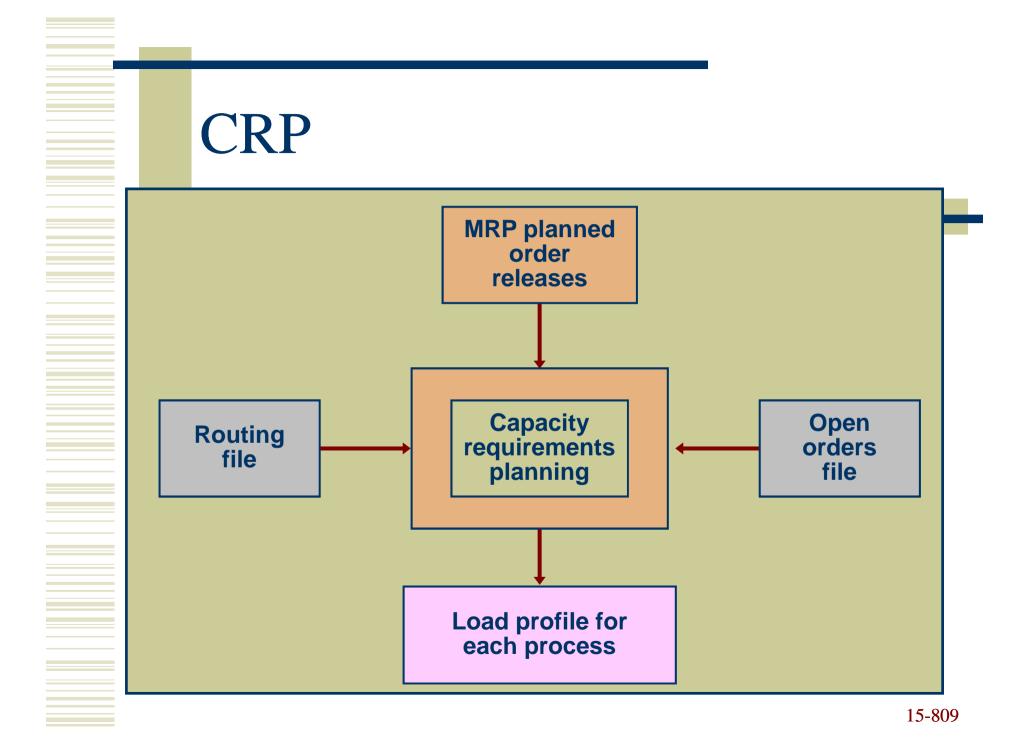
Advanced Lot Sizing Rules: POQ

 $POQ = Q/\overline{d} = 60/30 = 2$ periods worth of requirements

Item: Rod	od LLC: 0 Period						
Lot size: POQ 2	LT: 1	1	2	3	4	5	E
Gross Requirements		30	50	20	10	40	F
Scheduled Receipts							Þ
Projected on hand	30	0	20	0	40	0	F
Net Requirements			50		10		E
Planned Order Receipts			70		50		
Planned Order Releases		70		50			

Total cost of $POQ = (2 \times 60) + [(20 + 40) \times 1] = 180$

Planned Order Report


	#2740 Ind 100 order 200 ocated 50			Date Lead time Lot size Safety stock	9 - 25 - 05 2 weeks 200 50
DATE	ORDER NO.	GROSS REQS.	SCHEDI RECEIPTS) CTION
10-08 10-27	9-30 AL 10-01 GF SR 7542 10-10 CC 10-15 GF	- 4416 - 4174 R 6470 O 4471 R 6471 R 6471 50	25 25 50 200 75 50 25	2 - 5 150 Expec 7 2	0 5 0 0 lite SR 10-01 5 5 0 se PO 10-13
Key:AL = allocatedWO = work orderCO = customer orderSR = scheduled receiptPO = purchase orderGR = gross requirement					

MRP Action Report

Current date 9-25-08						
ITE	M DATE	ORDER	NO. Q	ΓY. A		N
#2740	10-08	7542	200	Expedite	SR	10-01
#3616	10-09			Move forward	PO	10-07
#2412	10-10			Move forward	PO	10-05
#3427	10-15			Move backward	PO	10-25
#2516	10-20	7648	100	De-expedite	SR	10-30
#2740	10-27		200	Release	PO	10-13
#3666	10-31		50	Release	WO	10-24

Capacity Requirements Planning (CRP)

- Creates a load profile
- Identifies under-loads and over-loads
- Inputs
 - Planned order releases
 - Routing file
 - Open orders file

Calculating Capacity

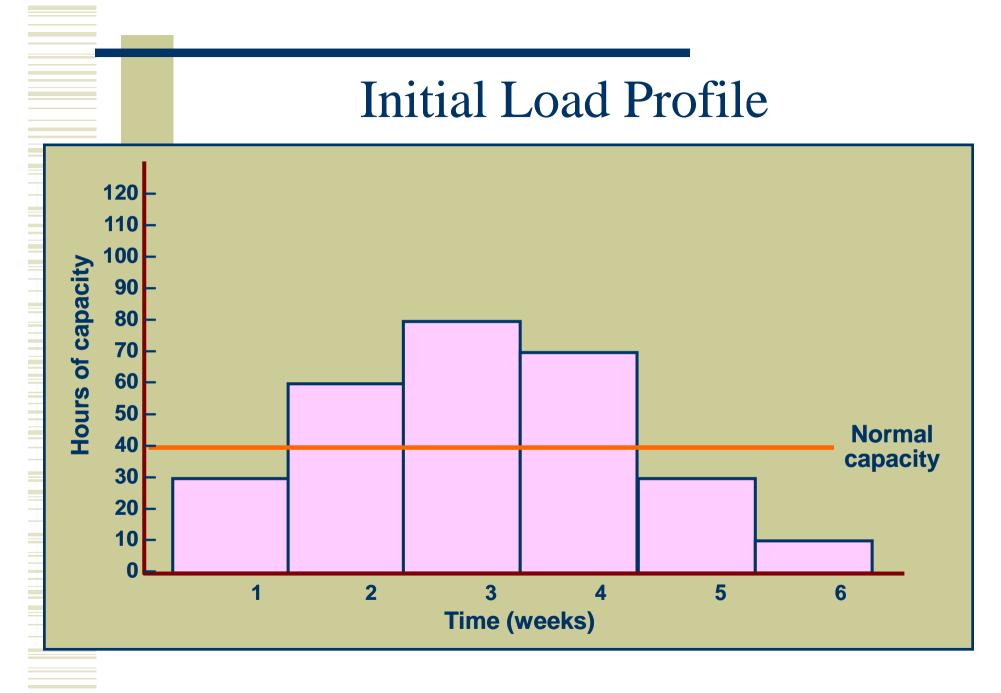
- Maximum capability to produce
- Rated Capacity
 - Theoretical output that could be attained if a process were operating at full speed without interruption, exceptions, or downtime
- Effective Capacity
 - Takes into account the efficiency with which a particular product or customer can be processed and the utilization of the scheduled hours or work

Effective Daily Capacity = (no. of machines or workers) x (hours per shift) x (no. of shifts) x (utilization) x (efficiency)

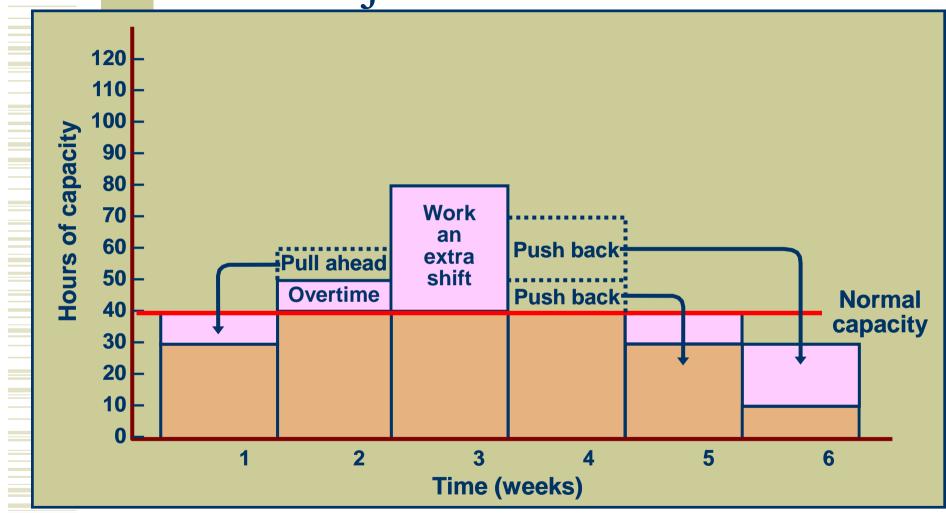
Calculating Capacity (cont.)

- Utilization
 - Percent of available time spent working
- Efficiency
 - How well a machine or worker performs compared to a standard output level
- Load
 - Standard hours of work assigned to a facility
- Load Percent
 - Ratio of load to capacity

Load Percent = capacity


x 100%

Load Profiles


- graphical comparison of load versus capacity
- Leveling underloaded conditions:
 - Acquire more work
 - Pull work ahead that is scheduled for later time periods
 - Reduce normal capacity

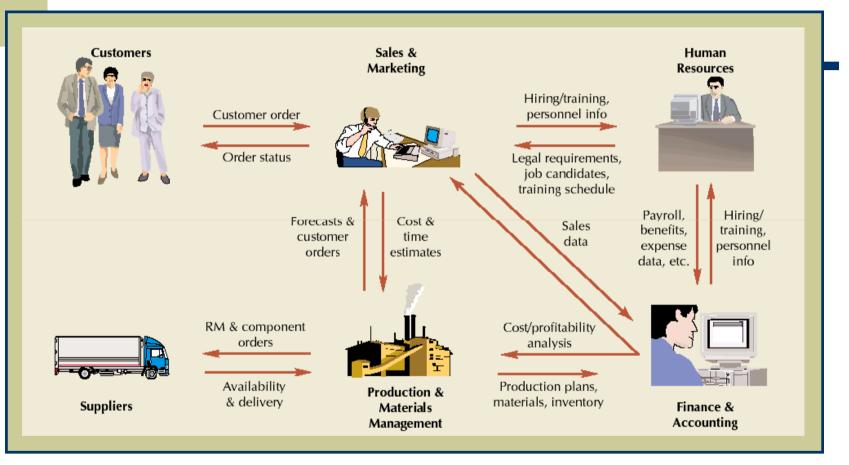
Reducing Over-load Conditions

- 1. Eliminating unnecessary requirements
- 2. Rerouting jobs to alternative machines, workers, or work centers
- 3. Splitting lots between two or more machines
- 4. Increasing normal capacity
- 5. Subcontracting
- 6. Increasing efficiency of the operation
- 7. Pushing work back to later time periods
- 8. Revising master schedule

Adjusted Load Profile

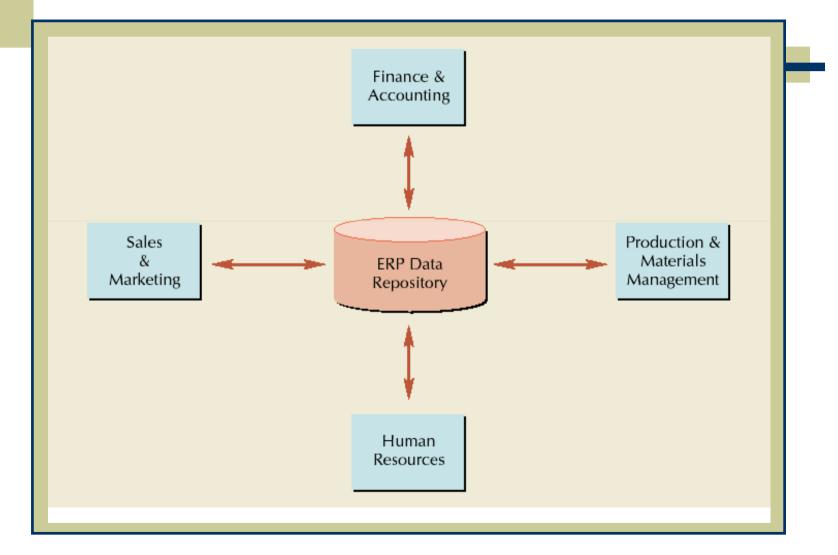
- Load leveling
 - process of balancing underloads and overloads

15-815


Relaxing MRP Assumptions

- Material is not always the most constraining resource
- Lead times can vary
- Not every transaction needs to be recorded
- Shop floor may require a more sophisticated scheduling system
- Scheduling in advance may not be appropriate for on-demand production.

Enterprise Resource Planning (ERP)


- Software that organizes and manages a company's business processes by
 - sharing information across functional areas
 - integrating business processes
 - facilitating customer interaction
 - providing benefit to global companies

Organizational Data Flows

Source: Adapted from Joseph Brady, Ellen Monk, and Bret Wagner, Concepts in Enterprise Resource Planning (Boston: Course Technology, 2001), pp. 7–12

ERP's Central Database

15-819

Selected Enterprise Software Vendors

Vendor	Specialty
1. SAP	Large enterprise discrete manufacturing ERP, SCM
2. Oracle Corp.	Large enterprise discrete manufacturing and services
3.Oracle's PeopleSoft	Human resources and employee relationship management
4. Oracle's Siebel Systems	Customer relationship management (CRM)
5. i2 Technologies	Supply chain management (SCM)
6. PTC, EDS, Dassault Systems	Product life cycle management (PLM)
7. Siemens Energy & Automation	Manufacturing execution systems (MES)
8. SCT	Process industry; education; energy
9. QAD	Multinational midmarket manufacturing
10. Microsoft Dynamics	Small to midmarket CRP, CRM

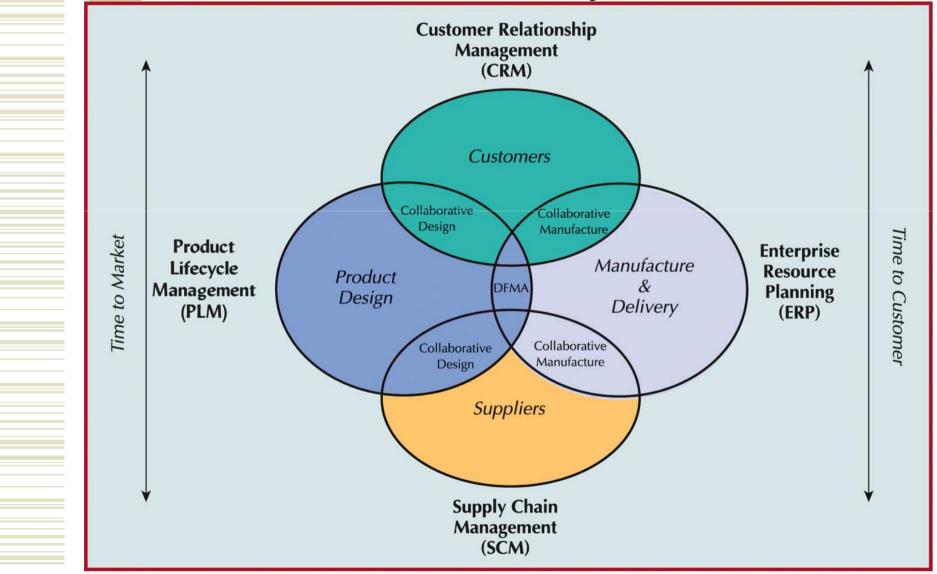
ERP Implementation

- Analyze business processes
- Choose modules to implement
 - Which processes have the biggest impact on customer relations?
 - Which process would benefit the most from integration?
 - Which processes should be standardized?
- Align level of sophistication
- Finalize delivery and access
- Link with external partners

Customer Relationship Management (CRM)

- Software that
 - Plans and executes business processes
 - Involves customer interaction
 - Changes focus from managing products to managing customers
 - Analyzes point-of-sale data for patterns used to predict future behavior

Supply Chain Management


- Software that plans and executes business processes related to supply chains
- Includes
 - Supply chain planning
 - Supply chain execution
 - Supplier relationship management
- Distinctions between ERP and SCM are becoming increasingly blurred

Product Lifecycle Management (PLM)

Software that

- Incorporates new product design and development and product life cycle management
- Integrates customers and suppliers in the design process though the entire product life cycle

ERP and Software Systems

Connectivity

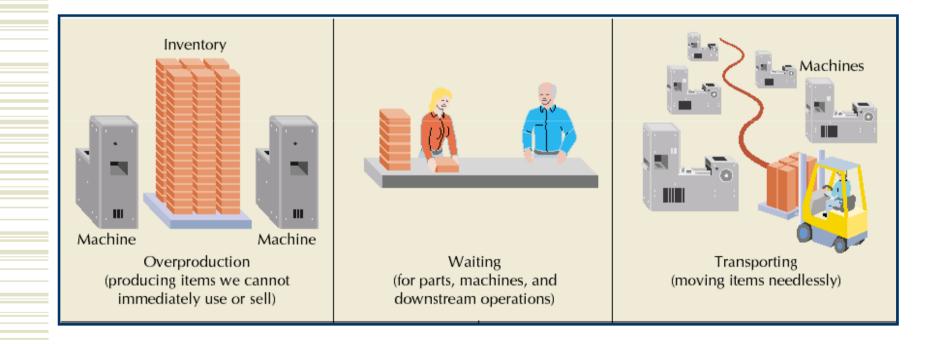
- Application programming interfaces (APIs)
 - give other programs well-defined ways of speaking to them
- Enterprise Application Integration (EAI) solutions
- EDI is being replaced by XML, business language of Internet
- Service-oriented architecture (SOA)
 - collection of "services" that communicate with each other within software or between software

Chapter 16

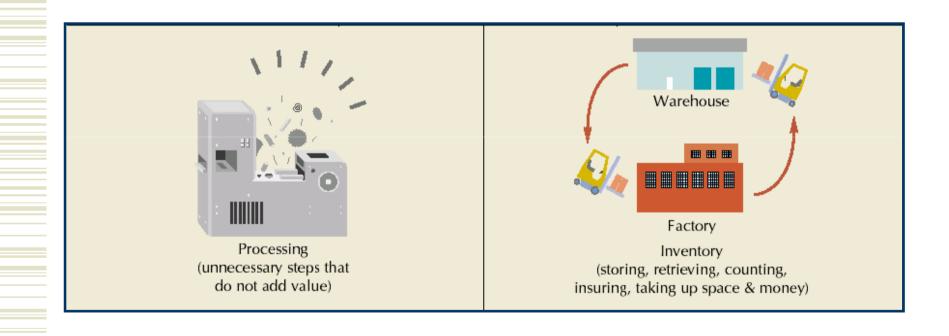
Lean Systems

Operations Management

Roberta Russell & Bernard W. Taylor, III


Lecture Outline

- Basic Elements of Lean Production
- Benefits of Lean Production
- Implementing Lean Production
- Lean Services
- Leaning the Supply Chain
- Lean Six Sigma
- Lean and the Environment
- Lean Consumption


Lean Production

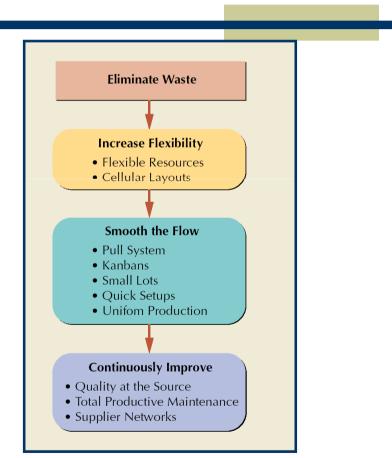
- Doing more with less inventory, fewer workers, less space
- Just-in-time (JIT)
 - smoothing the *flow* of material to arrive just as it is needed
 - "JIT" and "Lean Production" are used interchangeably
- Muda
 - waste, anything other than that which adds value to product or service

Waste in Operations

Waste in Operations (cont.)

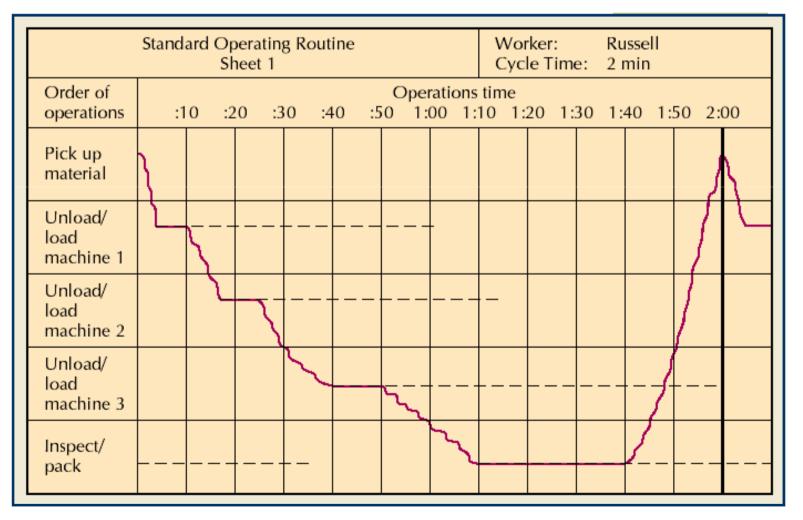

Waste in Operations (cont.)

Movement (searching for tools, parts, instruction, approval)



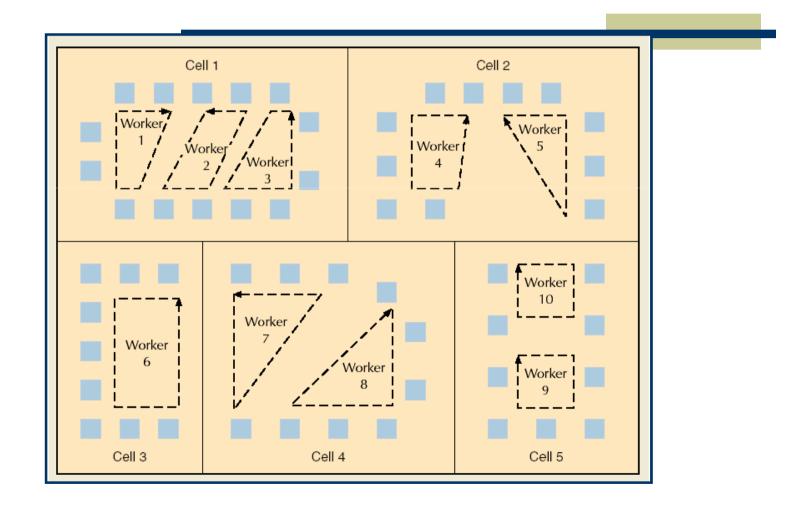
Defects (rework and scrap)

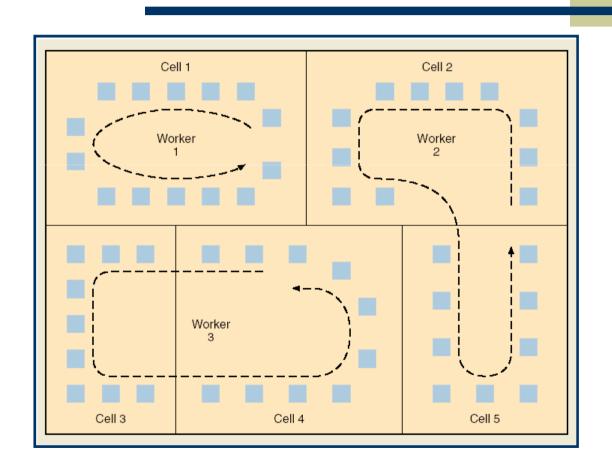
Basic Elements


- 1. Flexible resources
- 2. Cellular layouts
- 3. Pull system
- 4. Kanbans
- 5. Small lots
- 6. Quick setups
- 7. Uniform production levels
- 8. Quality at the source
- 9. Total productive maintenance
- 10. Supplier networks

Flexible Resources

- Multifunctional workers
 - perform more than one job
 - general-purpose machines perform several basic functions
- Cycle time
 - time required for the worker to complete one pass through the operations assigned
- Takt time
 - paces production to customer demand


Standard Operating Routine for a Worker


Cellular Layouts

- Manufacturing cells
 - comprised of dissimilar machines brought together to manufacture a family of parts
- Cycle time is adjusted to match takt time by changing worker paths

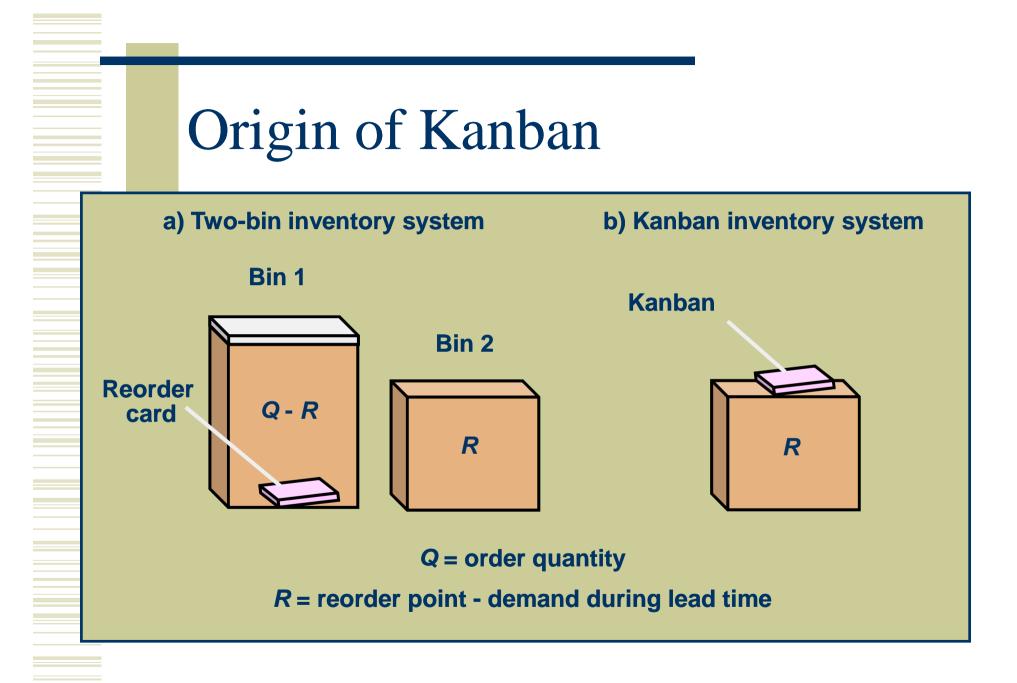
Cells with Worker Routes

Worker Routes Lengthen as Volume Decreases

16-838

Pull System

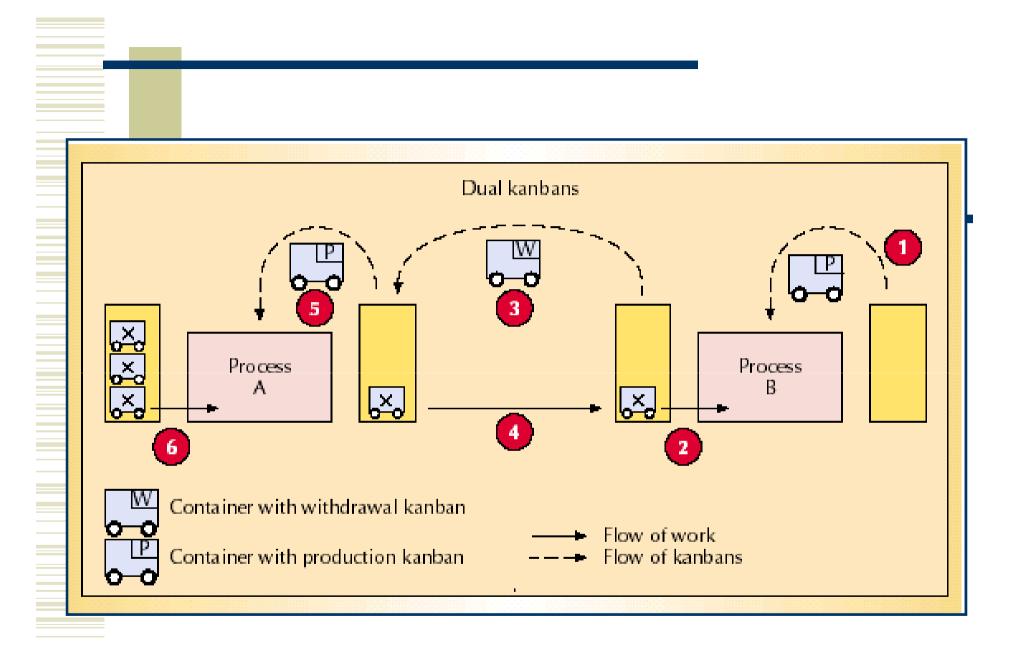
- Material is pulled through the system when needed
- Reversal of traditional push system where material is pushed according to a schedule
- Forces cooperation

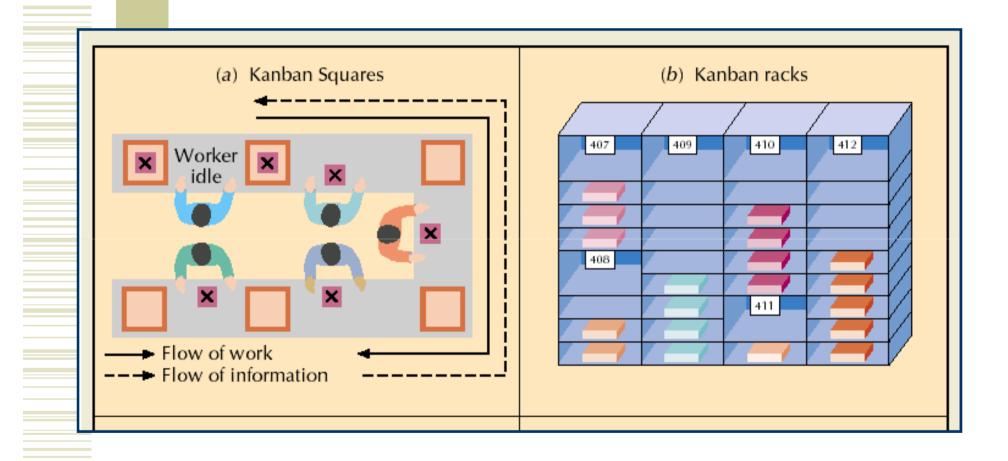

- Prevent over and underproduction
- While push systems rely on a predetermined schedule, pull systems rely on customer requests

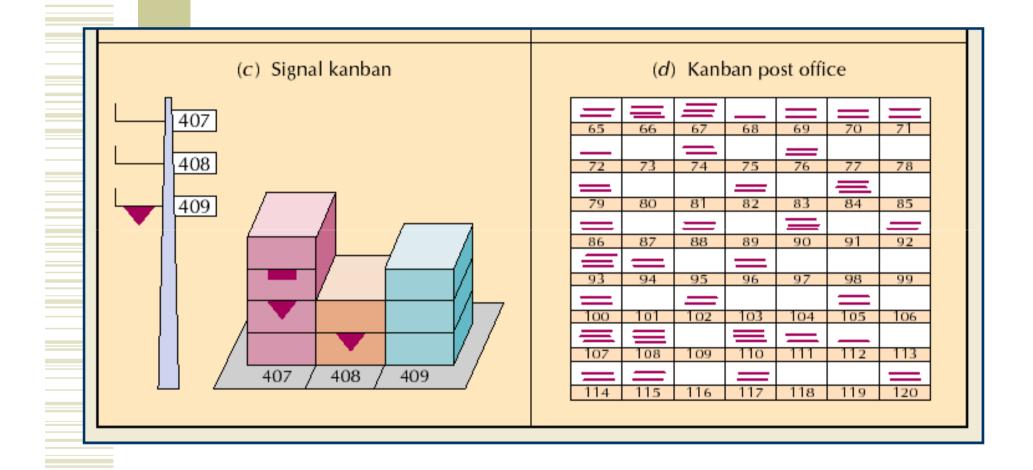
Kanbans

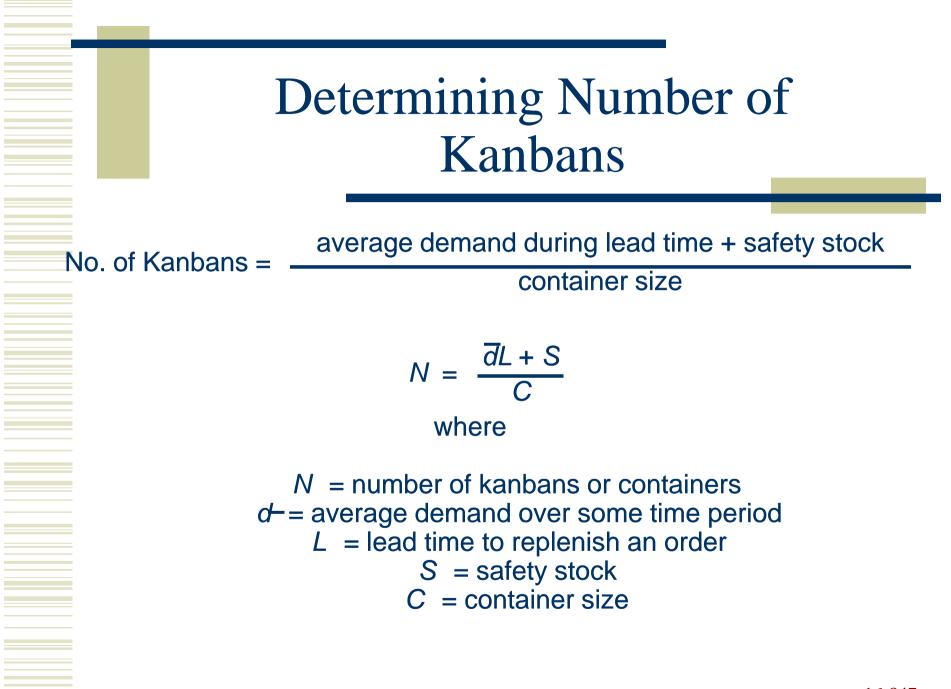
- Card which indicates standard quantity of production
- Derived from two-bin inventory system
- Maintain discipline of pull production
- Authorize production and movement of goods

Sample Kanban





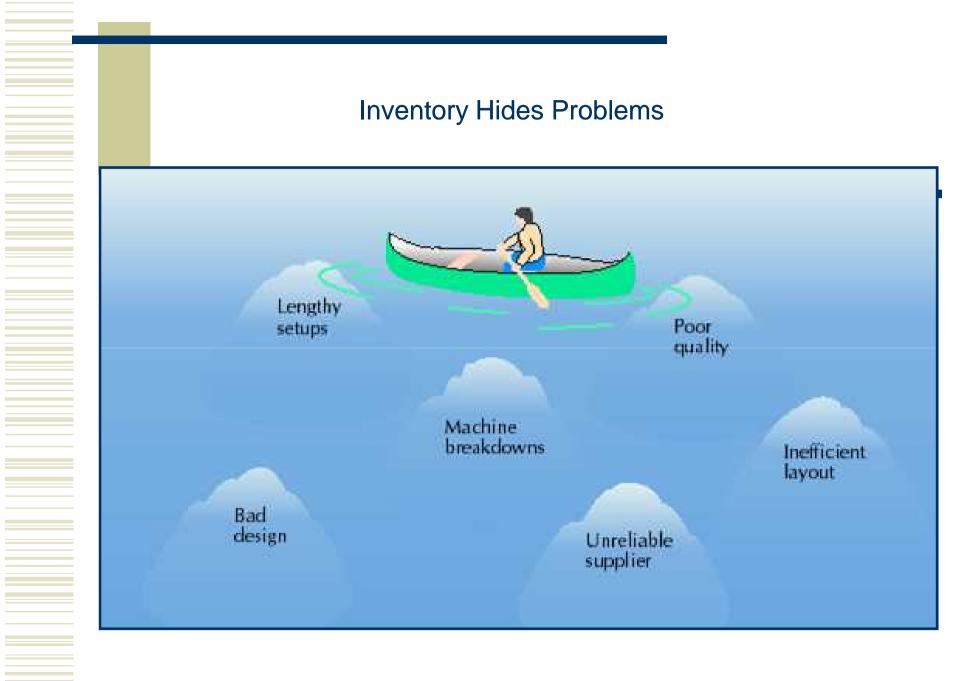

Types of Kanban

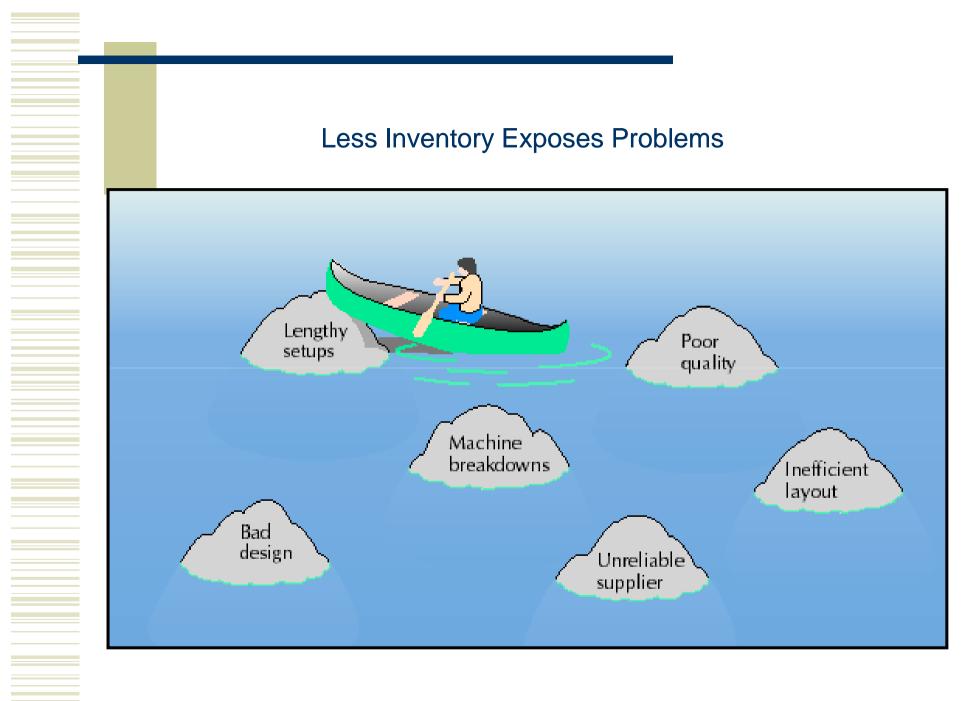

- Production kanban
 - authorizes production of goods
 - Withdrawal kanban
 - authorizes movement of goods
- Kanban square
 - a marked area designated to hold items

- Signal kanban
 - a triangular kanban used to signal production at the previous workstation
- Material kanban
 - used to order material in advance of a process
- Supplier kanban
 - rotates between the factory and suppliers

16-847

Determining Number of Kanbans: Example


> d = 150 bottles per hour L = 30 minutes = 0.5 hours $S = 0.10(150 \times 0.5) = 7.5$ C = 25 bottles


$$\frac{\overline{dL} + S}{C} = \frac{(150 \times 0.5) + 7.5}{25}$$

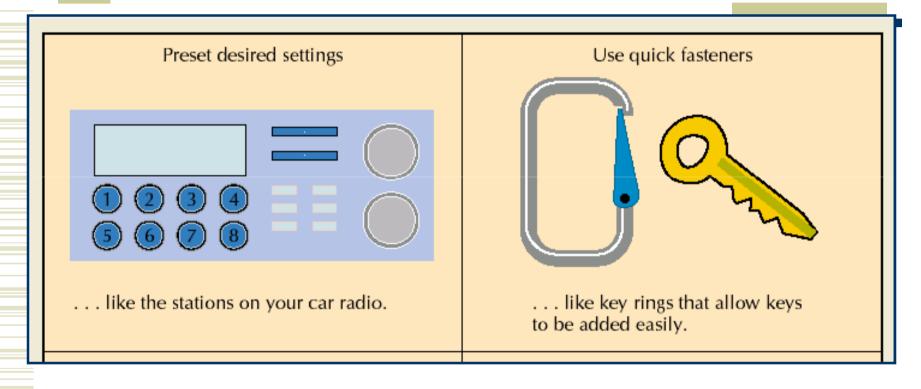
= $\frac{75 + 7.5}{25}$ = 3.3 kanbans or containers

Round up to 4 (to allow some slack) or down to 3 (to force improvement)

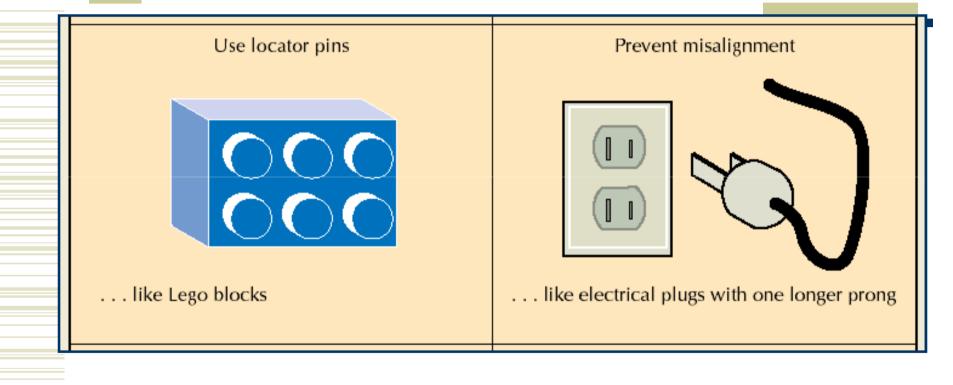
Small Lots

- Require less space and capital investment
- Move processes closer together
- Make quality problems easier to detect
- Make processes more dependent on each other

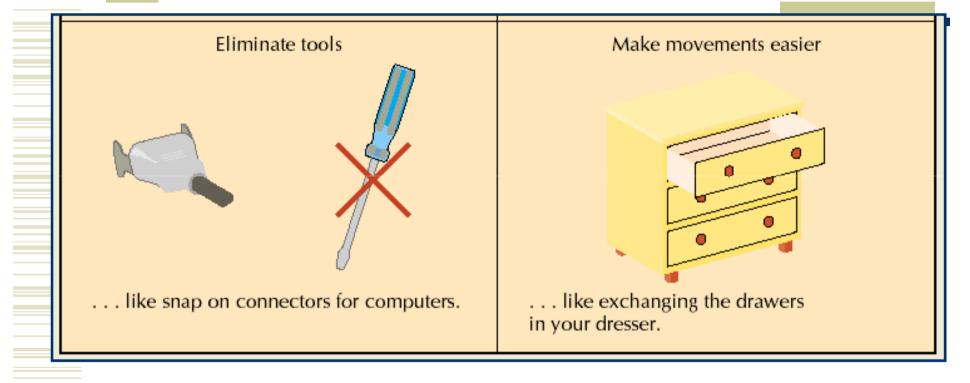
Components of Lead Time


- Processing time
 - Reduce number of items or improve efficiency
- Move time
 - Reduce distances, simplify movements, standardize routings
- Waiting time
 - Better scheduling, sufficient capacity
- Setup time
 - Generally the biggest bottleneck

Quick Setups


- Internal setup
 - Can be performed only when a process is stopped
- External setup
 - Can be performed in advance

- SMED Principles
 - Separate internal setup from external setup
 - Convert internal setup to external setup
 - Streamline all aspects of setup
 - Perform setup activities in parallel or eliminate them entirely


Common Techniques for Reducing Setup Time

Common Techniques for Reducing Setup Time (cont.)

Common Techniques for Reducing Setup Time (cont.)

Uniform Production Levels

- Result from smoothing production requirements on final assembly line
- Kanban systems can handle +/- 10% demand changes
- Reduce variability with more accurate forecasts
- Smooth demand across planning horizon
- Mixed-model assembly steadies component production

Mixed-Model Sequencing

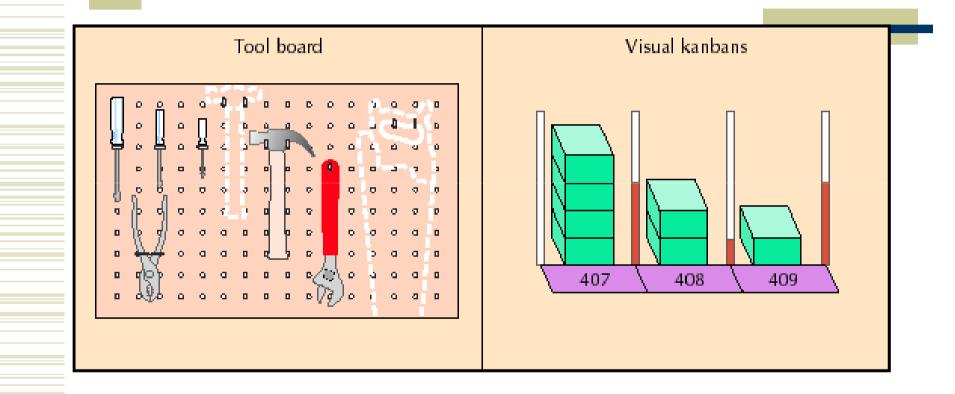
September Sales Forecast

Daily Breakdown

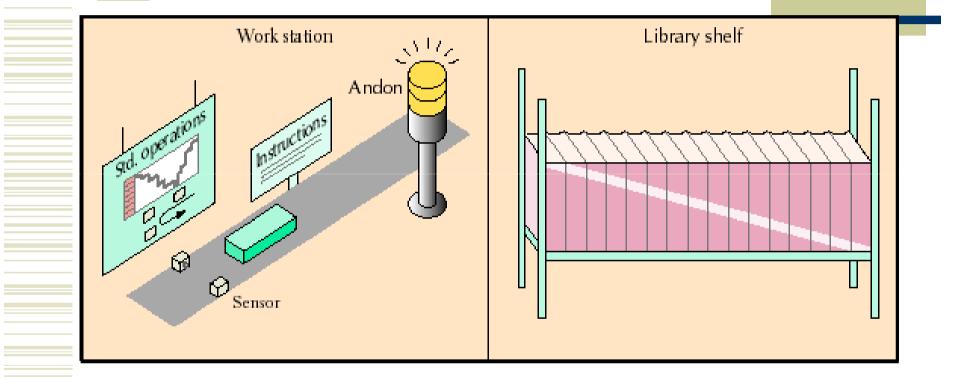
Day 1

Daily Sequence-Batched

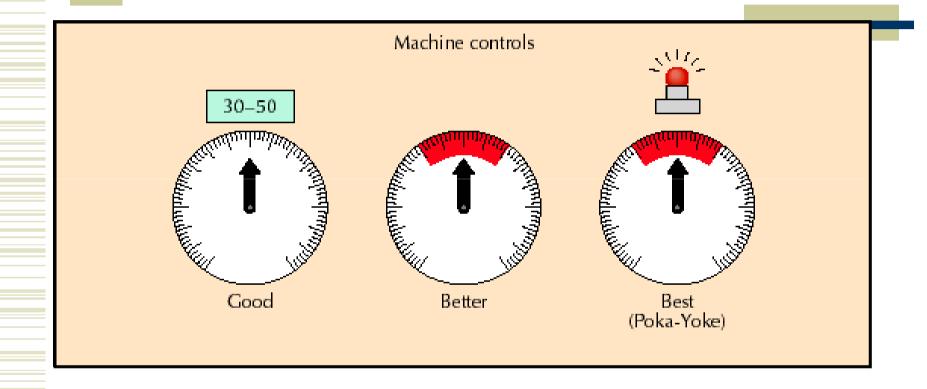
Day 1


Daily Sequence—Mixed

Quality at the Source


- Visual control
 - makes problems visible
- Poka-yokes
 - prevent defects from occurring
- Kaizen
 - a system of continuous improvement; "change for the good of all"

- Jidoka
 - authority to stop the production line
- Andons
 - call lights that signal quality problems
- Under-capacity scheduling
 - leaves time for planning, problem solving, and maintenance


Examples of Visual Control

Examples of Visual Control (cont.)

Examples of Visual Control (cont.)

5 Whys

- One of the keys to an effective Kaizen is finding the root cause of a problem and eliminating it
- A practice of asking "why?" repeatedly until the underlying cause is identified (usually requiring five questions)
- Simple, yet powerful technique for finding the root cause of a problem

Total Productive Maintenance (TPM)

- Breakdown maintenance
 - Repairs to make failed machine operational
- Preventive maintenance
 - System of periodic inspection and maintenance to keep machines operating
- TPM combines preventive maintenance and total quality concepts

TPM Requirements

- Design products that can be easily produced on existing machines
- Design machines for easier operation, changeover, maintenance
- Train and retrain workers to operate machines
- Purchase machines that maximize productive potential
- Design preventive maintenance plan spanning life of machine

5S Scan	Goal	Eliminate or Correct
Seiri(<i>sort</i>)	Keep only what you need	Unneeded equipment, tools, furniture; unneeded items on walls, bulletins; items blocking aisles or stacked in corners; unneeded inventory, supplies, parts; safety hazards
Seiton(<i>set in order</i>)	A place for everything and everything in its	Items not in their correct places; correct places not obvious; aisles, workstations, & equipment locations not indicated; items not put away
Seisou (shine)	place Cleaning, and looking	immediately after use Floors, walls, stairs, equipment, & surfaces not
Seiketsu (standardize) Shisuke (sustain)	for ways to keep clean and organized Maintaining and monitoring the first three categories Sticking to the rules	clean; cleaning materials not easily accessible; lines, labels, signs broken or unclean; other cleaning problems Necessary information not visible; standards not known; checklists missing; quantities and limits not easily recognizable; items can't be located within 30 seconds Number of workers without 5S training; number of daily 5S inspections not performed; number of personal items not stored; number of times job aids not available or up-to-date

Supplier Networks

- Long-term supplier contracts
- Synchronized production
- Supplier certification
- Mixed loads and frequent deliveries
- Precise delivery schedules
- Standardized, sequenced delivery
- Locating in close proximity to the customer

Benefits of Lean Production

- Reduced inventory
- Improved quality
- Lower costs
- Reduced space requirements
- Shorter lead time
- Increased productivity

Benefits of Lean Production (cont.)

- Greater flexibility
- Better relations with suppliers
- Simplified scheduling and control activities
- Increased capacity
- Better use of human resources
- More product variety

Implementing Lean Production

- Use lean production to finely tune an operating system
- Somewhat different in USA than Japan
- Lean production is still evolving
- Lean production is not for everyone

Lean Services

- Basic elements of lean production apply equally to services
- Most prevalent applications
 - lean retailing
 - lean banking
 - lean health care

Leaning the Supply Chain

- "pulling" a smooth flow of material through a series of suppliers to support frequent replenishment orders and changes in customer demand
- Firms need to share information and coordinate demand forecasts, production planning, and inventory replenishment with suppliers and supplier's suppliers throughout supply chain

Leaning the Supply Chain (cont.)

- Steps in Leaning the Supply Chain:
 - Build a highly collaborative business environment
 - Adopt the technology to support your system

Lean Six Sigma

- Lean and Six Sigma are natural partners for process improvement
- Lean
 - Eliminates waste and creates flow
 - More continuous improvement
- Six Sigma
 - Reduces variability and enhances process capabilities
 - Requires breakthrough improvements

Lean and the Environment

- Lean's mandate to eliminate waste and operate only with those resources that are absolutely necessary aligns well with environmental initiatives
- Environmental waste is often an indicator of poor process design and inefficient production

EPA Recommendations

- Commit to eliminate environmental waste through lean implementation
- Recognize new improvement opportunities by incorporating environmental, heath and safety (EHS) icons and data into value stream maps
- Involve staff with EHS expertise in planning
- Find and drive out environmental wastes in specific process by using lean process-improvement tools
- Empower and enable workers to eliminate environmental wastes in their work areas

Lean Consumption

- Consumptions process involves locating, buying, installing, using, maintaining, repairing, and recycling.
- Lean Consumption seeks to:
 - Provide customers what they want, where and when they want it
 - Resolve customer problems quickly and completely
 - Reduce the number of problems customers need to solve

Chapter 17

Scheduling

Operations Management

Roberta Russell & Bernard W. Taylor, III

Lecture Outline

- Objectives in Scheduling
- Loading
- Sequencing
- Monitoring
- Advanced Planning and Scheduling Systems
- Theory of Constraints
- Employee Scheduling

What is Scheduling?

- Last stage of planning before production occurs
- Specifies <u>when</u> labor, equipment, and facilities are needed to produce a product or provide a service

Scheduled Operations

Process Industry

- Linear programming
- EOQ with non-instantaneous replenishment
- Mass Production
 - Assembly line balancing
- Project
 - Project -scheduling techniques (PERT, CPM)

- Batch Production
 - Aggregate planning
 - Master scheduling
 - Material requirements planning (MRP)
 - Capacity requirements planning (CRP)

Objectives in Scheduling

- Meet customer due dates
- Minimize job lateness
- Minimize response time
- Minimize completion time
- Minimize time in the system

- Minimize overtime
- Maximize machine or labor utilization
- Minimize idle time
- Minimize work-inprocess inventory

Shop Floor Control (SFC)

- scheduling and monitoring of day-to-day production in a job shop
- also called production control and production activity control (PAC)
- usually performed by production control department
 - Loading
 - Check availability of material, machines, and labor
 - Sequencing
 - Release work orders to shop and issue dispatch lists for individual machines
 - Monitoring
 - Maintain progress reports on each job until it is complete

Loading

- Process of assigning work to limited resources
- Perform work with most efficient resources
- Use assignment method of linear programming to determine allocation

Assignment Method

- 1. Perform row reductions
 - subtract minimum value in each row from all other row values
- 2. Perform column reductions
 - subtract minimum value in each column from all other column values
- 3. Cross out all zeros in matrix
 - use minimum number of horizontal and vertical lines

- 4. If number of lines equals number of rows in matrix, then optimum solution has been found. Make assignments where zeros appear
 - Else modify matrix
 - subtract minimum uncrossed value from all uncrossed values
 - add it to all cells where two lines intersect
 - other values in matrix remain unchanged
- 5. Repeat steps 3 and 4 until optimum solution is reached

Assignment Method: Example

		Initial							PR	OJE	СТ		
		Matrix		1			2		3				
		Bryan			1	0		5	6		10		
		Kari			6		2	4		6			
		Noa Chri	Noah			7 9		6 5	5 1		6 10		
		Chin	3			9		5	4		10		
Ro	w re	ductic	n		Column reduction Cover all					all ze	ros		
5 4	0	1 2	5 4		3 2	0 0	1 2	4 3		3 2	0	1	4 3
2	1	0	1		0	1	0	0		0		0	0
5	1	0	6	4	3	1	0	5		3	1	0	5
		Num	ber li	nes ≠	nu	mber	of ro	ows so	o moc	dify n	natrix		

Assignment Method: Example (cont.)

	Modify matrix Cover all zeros												
	1	0 0	1 2	2 1		1 0 0 0		1 2	2			-	
	0	3	2	0		0 3		2	0				
	1	1	0	3		1 1		0	3				
	Nur	nber c	of line	s = ni	umbe	r of rov	/S S	o at	optim	nal so	lution		
PROJECT PF												_	
		F	PROJ	ECT						PRO	JECT	·	
		F 1	PROJ 2	ECT 3	4				1	PRO	JECT 3	- 4	
Brya	an	F 1 1			4	Bry	an						
Kari		1 1 0	2 0 0	3 1 2		Ka	i		1 10 6	2 5 2	3 6 4	4 10 6	
-	h	1 1	2 0	3 1	2		'i ah			2	3 6	4 10 6	

Project Cost = $(5 + 6 + 4 + 6) \times 100 = 2,100$

Sequencing

Prioritize jobs assigned to a resource If no order specified use first-come first-served (FCFS) **Other Sequencing Rules** FCFS - first-come, first-served LCFS - last come, first served DDATE - earliest due date **CUSTPR** - highest customer priority **SETUP** - similar required setups **SLACK - smallest slack** CR - smallest critical ratio SPT - shortest processing time LPT - longest processing time

Minimum Slack and Smallest Critical Ratio

SLACK considers both work and time remaining SLACK = (due date – today's date) – (processing time)

CR recalculates sequence as processing continues and arranges information in ratio form

due date - today's date

remaining processing time

If CR > 1, job ahead of schedule If CR < 1, job behind schedule If CR = 1, job on schedule

Sequencing Jobs through One Process

- Flow time (completion time)
 - Time for a job to flow through system
- Makespan
 - Time for a group of jobs to be completed

Tardiness

 Difference between a late job's due date and its completion time

Simple Sequencing Rules

JOB	PROCESSING TIME	DUE DATE
A	5	10
B	10	15
С	2	5
D	8	12
E	6	8

Simple Sequencing Rules: FCFS

S	SEQUENCE		TIME	ESSING COMPL TIME		DUE TARDINE
	Α	0	5	5	10	C
	B	5	10	15	15	C
	С	15	2	17	5	12
	D	17	8	25	12	13
	E	25	6	31	8	23
	Total			93		
	Average			93/5 = 18.60		48/5 = 9

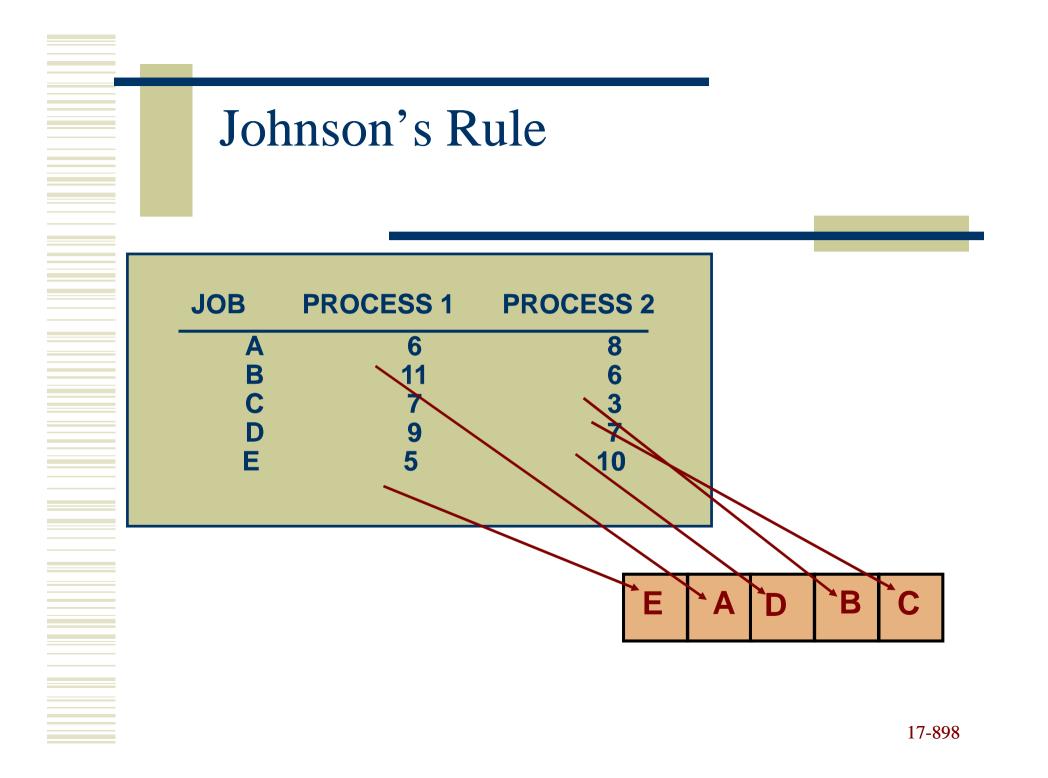
Simple Sequencing Rules: DDATE

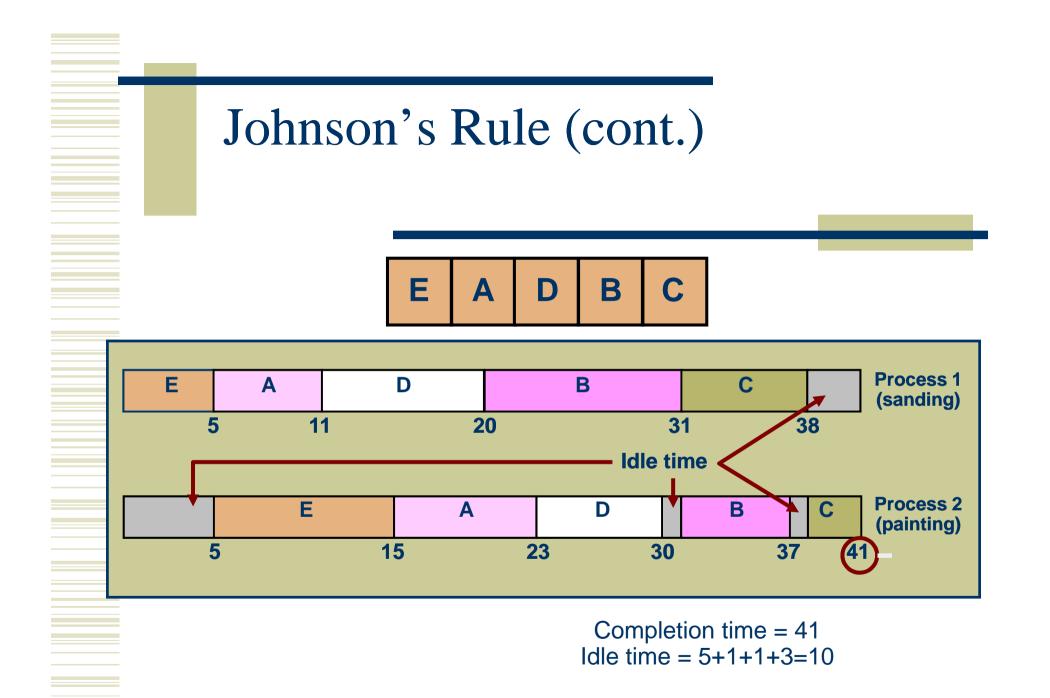
	ATE STA TIME	RT PROCE TIME	SSING COMPL TIME		DUE TARDINESS
С	0	2	2	5	0
E	2	6	8	8	0
Α	8	5	13	10	3
D	13	8	21	12	9
B	21	10	31	15	16
Total			75		<u> </u>
Average			75/5 = 15.00		28/5 = 5.6

$ \begin{array}{ c c c c c c c c } \hline SLACK & START PROCESSING COMPLETION DUE \\ \hline SEQUENCE TIME & TIME & TIME & DATE & TARDINESS \\ \hline E & 0 & 6 & 6 & 8 & 0 \\ \hline C & 6 & 2 & 8 & 5 & 3 \\ \hline D & 8 & 8 & 16 & 12 & 4 \\ \hline A & 16 & 5 & 21 & 10 & 11 \\ \hline B & 21 & 10 & 31 & 15 & 16 \\ \hline Total & & & & & \\ \hline Average & & & & & & & & \\ \hline Average & & & & & & & & & \\ \hline \end{array} $		-	Sequer SLACE		B(15-0 C(5-0 D(12-	$\begin{array}{l} 0) - 5 = 5 \\ 0) - 10 = 5 \\ 0) - 2 = 3 \\ 0) - 8 = 4 \\ 0) - 6 = 2 \end{array}$
	SEQUENCE E C D A B Total	TIME 0 6 8 16	TIME 6 2 8 5	TIME 6 8 16 21 31 82	DATE 8 5 12 10	TARDINESS 0 3 4 11 16

Simple Sequencing Rules: SPT

SEQ	UENCE	TIME	TIME	TIME	DATE	TARDINE
	С	0	2	2	5	0
	Α	2	5	7	10	0
	E	7	6	13	8	5
	D	13	8	21	12	9
T Av	B	21	10	31	15	16
1	Fotal			74		30
	verage			74/5 = 14.80		30/5 =


Simple Sequencing Rules: Summary

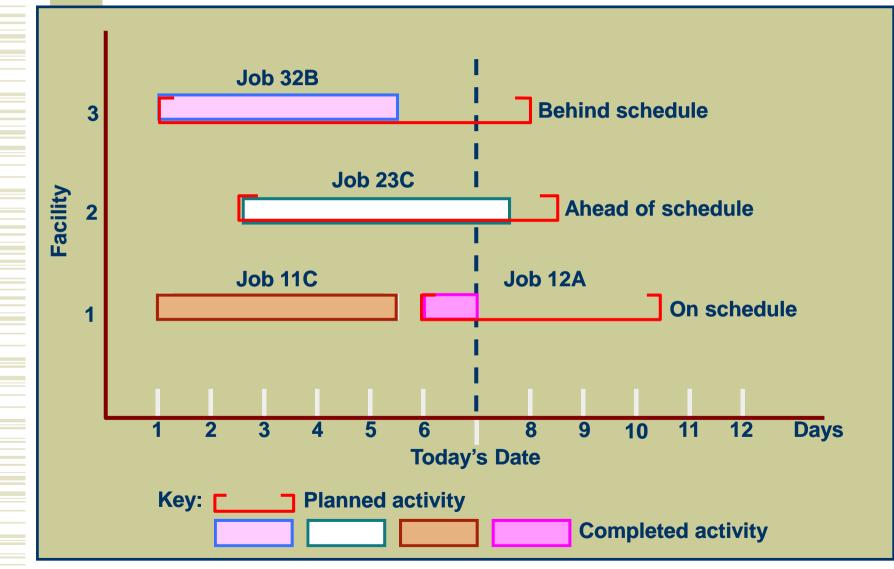

RULE		RAGE TON TIME	RAGE INESS	NO. JOBS T		MAXIMUN TARDINES	
FCF DDA SLA SPT	TE CK	18.60 15.00 16.40 14.80	9.6 5.6 6.8 6.0		3 3 4 3	23 16 16 16	

Sequencing Jobs Through Two Serial Process

Johnson's Rule

- List time required to process each job at each machine. Set up a one-dimensional matrix to represent desired sequence with # of slots equal to # of jobs.
- 2. Select smallest processing time at either machine. If that time is on machine 1, put the job as near to beginning of sequence as possible.
 - 3. If smallest time occurs on machine 2, put the job as near to the end of the sequence as possible.
 - 4. Remove job from list.
- 5. Repeat steps 2-4 until all slots in matrix are filled and all jobs are sequenced.

17-899


Guidelines for Selecting a Sequencing Rule

- 1. SPT most useful when shop is highly congested
- 2. Use SLACK for periods of normal activity
- 3. Use DDATE when only small tardiness values can be tolerated
- 4. Use LPT if subcontracting is anticipated
- 5. Use FCFS when operating at low-capacity levels
- 6. Do not use SPT to sequence jobs that have to be assembled with other jobs at a later date

Monitoring

- Work package
 - Shop paperwork that travels with a job
- Gantt Chart
 - Shows both planned and completed activities against a time scale
- Input/Output Control
 - Monitors the input and output from each work center

Gantt Chart

Input/Output Control

Input/Output Report

PERIOD	1	2	3	4	TOTAL
Planned input	65	65	70	70	270
Actual input					0
Deviation					0
Planned output	75	75	75	75	300
Actual output					0
Deviation					0
Backlog	³⁰ 2	0 10) 5	5 0	

Input/Output Control (cont.)

Input/Output Report

PERIOD	1	2	3	4	TOTAL
Planned input	65	65	70	70	270
Actual input	60	60	65	65	250
Deviation	-5	-5	-5	-5	-20
Planned output	75	75	75	75	300
Actual output	75	75	65	65	280
Deviation	-0	-0	-10	-10	-20
Backlog	30	15	0	0	0

Advanced Planning and Scheduling Systems

- Infinite assumes infinite capacity
 - Loads without regard to capacity
 - Then levels the load and sequences jobs
- Finite assumes finite (limited) capacity
 - Sequences jobs as part of the loading decision
 - Resources are never loaded beyond capacity

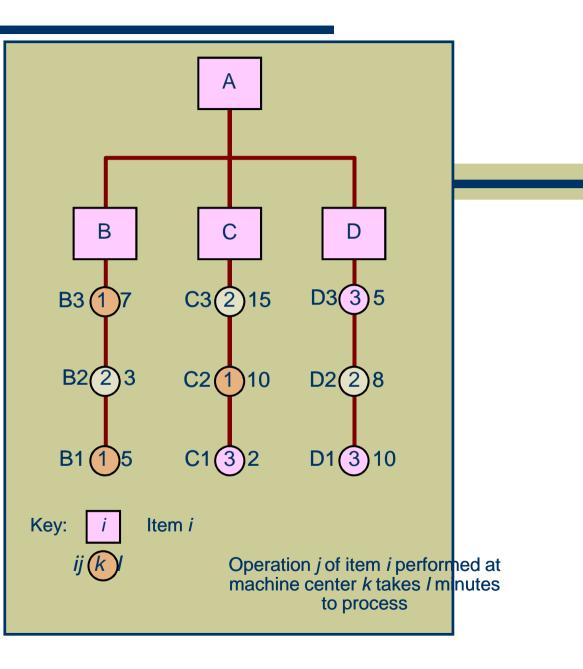
Advanced Planning and Scheduling Systems (cont.)

- Advanced planning and scheduling (APS)
 - Add-ins to ERP systems
 - Constraint-based programming (CBP) identifies a solution space and evaluates alternatives
 - Genetic algorithms based on natural selection properties of genetics
 - Manufacturing execution system (MES) monitors status, usage, availability, quality

Theory of Constraints

- Not all resources are used evenly
- Concentrate on the" bottleneck" resource
- Synchronize flow through the bottleneck
- Use process and transfer batch sizes to move product through facility

Drum-Buffer-Rope

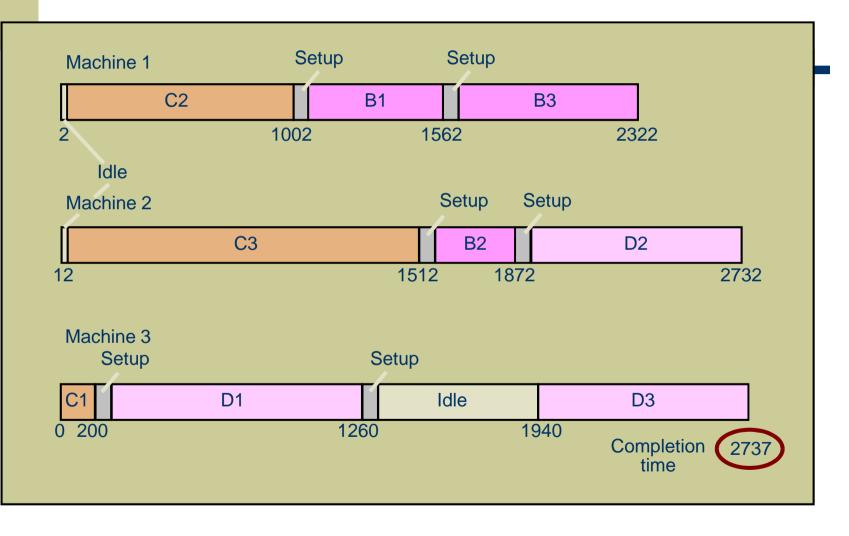

- Drum
 - Bottleneck, beating to set the pace of production for the rest of the system
- Buffer
 - Inventory placed in front of the bottleneck to ensure it is always kept busy
 - Determines output or throughput of the system
- Rope
 - Communication signal; tells processes upstream when they should begin production

TOC Scheduling Procedure

Identify bottleneck

- Schedule job first whose lead time to bottleneck is less than or equal to bottleneck processing time
- Forward schedule bottleneck machine
- Backward schedule other machines to sustain bottleneck schedule
- Transfer in batch sizes smaller than process batch size

Synchronous Manufacturing


Synchronous Manufacturing (cont.)

Demand = 100 A's Machine setup time = 60 minutes

MACHINE 1		MACH	IINE 2	MACHINE 3		
B1 B3	5	B2 C3	3 15	C1 D3	25	
C2	10	D2	8	D3	10	
Sum	22		26*		17	


* Bottleneck

Synchronous Manufacturing (cont.)

Employee Scheduling

- Labor is very flexible resource
- Scheduling workforce is complicated, repetitive task
- Assignment method can be used
- Heuristics are commonly used

Employee Scheduling Heuristic

- 1. Let N = no. of workers available D_i = demand for workers on day i X = day working O = day off
- 2. Assign the first N D_1 workers day 1 off. Assign the next N D_2 workers day 2 off. Continue in a similar manner until all days are have been scheduled
 - 3. If number of workdays for full time employee < 5, assign remaining workdays so consecutive days off are possible
 - 4. Assign any remaining work to part-time employees
- 5. If consecutive days off are desired, consider switching schedules among days with the same demand requirements

Employee Scheduling

Employee	e So	che	du	ling	-			
DAY OF WEEK	М	т	W	тн	F	SA	SU	
	M	IN NO	OF					
WORKERS REQUIRED	3	3	4	3	4	5	3	
Taylor Smith Simpson Allen Dickerson								

Employee Scheduling (cont.)

DAY OF WEEK	Μ	т	W	тн	F	SA	SU
	N	IIN NC	. OF				
WORKERS REQUIRED	3	3	4	3	4	5	3
Taylor	0	Х	Х	0	Х	Х	X
Smith	0	Х	X	Ο	Х	X	Х
Simpson	Х	0	X	Х	0	X	Х
Allen	Х	0	Х	X	Х	Х	0
Dickerson	X	Х	0	Х	Х	Х	0

Completed schedule satisfies requirements but has no consecutive days off

Employee Scheduling (cont.)

DAY OF WEEK	М	т	W	тн	F	SA	SU	
	N	IIN NC	. OF					
WORKERS REQUIRED	3	3	4	3	4	5	3	
Taylor	0	0	Х	Х	Х	Х	X	
Smith	0	0	X	Х	Х	Х	Х	
Simpson	Х	Х	Ο	Ο	Х	Х	Х	
Allen	Х	Х	Х	Ο	Х	Х	0	
Dickerson	X	Х	Х	Х	0	Х	0	

Revised schedule satisfies requirements with consecutive days off for most employees

Automated Scheduling Systems

- Staff Scheduling
- Schedule Bidding
- Schedule
 Optimization

